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Abstract

The Fortran subroutine BFOUR is an implementation of a branch and bound al-
gorithm for mixed-integer optimization. It is applied to solve mixed-integer quadratic
programs as part of the code MIQL, and to solve mixed integer nonlinear optimiza-
tion problems in combination with the code MISQP. The usage is documented and
numerical results are presented for MIQL.
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1 Introduction

The code BFOUR is an implementation of a branch and bound algorithm, and can only be
used as part of a more general framework, e.g., mixed integer quadratic or mixed integer
nonlinear programming. Proceeding from a scalar function F (y) defined for y ∈ IRni with
yl ≤ y ≤ yu, the code is designed to solve general integer optimization problems of the form

y ∈ Z
ni :

minF (y)
yl ≤ y ≤ yu .

(1)

The basic idea is to generate and solve a sequence of continuous subproblems

y ∈ IRni :
minF (y)
y′l ≤ y ≤ y′u ,

(2)

where yl ≤ y′l ≤ y′u ≤ yu are lower and upper bounds set by the branch and bound algorithm.
It is assumed that F is relaxable, i.e., that F (y) can be evaluated also for non-integral
parameter values of y ∈ IRni.

A typical application is mixed integer quadratic programming (MIQP)

x ∈ IRnc , y ∈ Z
ni :

min 1
2
(xT , yT )C

(
x
y

)
+ (xT , yT )d

(xT , yT )aj + bj = 0 , j = 1, . . . , me ,

(xT , yT )aj + bj ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu ,

yl ≤ y ≤ yu .

(3)

The matrix C is supposed to be positive definite, i.e., problem (4) is strictly convex. Thus,
the resulting subproblem (2) becomes

x ∈ IRnc , y ∈ IRni :

min 1
2
(xT , yT )C

(
x
y

)
+ (xT , yT )d

(xT , yT )aj + bj = 0 , j = 1, . . . , me ,

(xT , yT )aj + bj ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu ,

y′l ≤ y ≤ y′u ,

(4)
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yl ≤ y′l ≤ y′u ≤ yu. The generated subproblems differ from the original formulation (3)
in restricted lower and upper bounds for integer variables. Convex continuous quadratic
programming problems can be solved, e.g., by the code QL, see Schittkowski [11], Goldfarb
and Idnani [5], or Powell [9].

In case of nonlinear mixed integer programming (MINLP),

x ∈ IRnc, y ∈ Z
ni :

min f(x, y)

gj(x, y) = 0 , j = 1, . . . , me ,

gj(x, y) ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu ,

yl ≤ y ≤ yu .

(5)

one has to solve continuous nonlinear subproblems of the form

x ∈ IRnc , y ∈ IRni :

min f(x, y)

gj(x, y) = 0 , j = 1, . . . , me ,

gj(x, y) ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu ,

y′l ≤ y ≤ y′u .

(6)

In these situations, we define F (y) = f(xy, y), where xy is the continuous solution of (5) or
(6) for a fixed y. F (y) may become undefined if the feasible domain is empty, i.e., if the
bounds generated by the branch and bound procedure, are too stringent.

The functions f(x, y) and gj(x, y), j = 1, . . . , m, are supposed to be twice continuously
differentiable in order to apply efficient solution methods to (6). Here me is the number
of equality constraint, m denotes the total number of constraints, xl and xu define box
constraints for the continuous variables x ∈ IRnc and yl and yu are box constraints for
the integer variables y ∈ Z

ni . Possible solution methods for the continuous relaxation are
NLPQLP of Schittkowski [10, 12] or MISQP of Exler and Schittkowski [3, 4]. In the latter
case, it is possible to branch only subject to a subset of the given integer variables.

This manual is organized as follows. The subsequent section introduces the basic concept
of a branch and bound method and outlines the various solution strategies of BFOUR. Im-
plementation details and program documentation are found in section 3, which also includes
an illustrative example of BFOUR executed in combination with the solver QL for quadratic
programming. Section 4 summarizes some numerical results obtained by the solver MIQL
of Lehmann and Schittkowski [6].
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2 The Branch and Bound Procedure

A branch and bound method is an iterative interaction of a branching and bounding process
and an appropriate subproblem solver for evaluating F (y), see (2). Starting point is the
relaxation of the original mixed integer program, i.e., the corresponding continuous problem
obtained by replacing the condition y ∈ Z

ni by y ∈ IRni. The relaxed problem must be
solved by a suitable subproblem solver and is interpreted as the root node of a binary search
tree. New nodes of the enumeration tree are successively generated by changing bounds for
integer variables. Again, continuous problems corresponding to the created node are to be
solved in the same way. See also an early paper about a branch and bound algorithm for
linear programming published by Dakin [2].

After exploring all possible nodes of the tree, i.e., if all corresponding subproblems are
solved, the integer feasible subproblem solution possessing the lowest objective value is the
optimal solution of the original problem (1). There are certain situations that allow to speed
up the solution process, such that not all nodes have to be explored. This will be explained
now in more detail.

In the following, we assume that the continuous relaxation problems are convex, i.e.,
the quadratic programs (4) or the nonlinear programs (6) for all possible bounds. Thus, if
the optimal solution of the relaxed root problem is integer, the branch and bound process
can be stopped and the optimal solution is found. Otherwise, a fractional integer variable is
selected and two new continuous subproblems are generated. They are obtained by rounding
the fractional value of a selected integer variable, say yk, to get two separate subproblems,
one with upper bound �yk�, another one with lower bound �yk� + 1. Each subproblem
determines a new child node of the binary search tree.

An integer feasible solution of a subproblem gives an upper bound for the optimal objec-
tive function value of (1). The minimal objective value at all nodes that are not completely
explored, is a lower bound for the optimal objective value. Thus, whenever an feasible integer
solution is found, there exists an upper and a lower bound for the optimal solution.

Furthermore, certain subtrees of the binary search tree can be eliminated or fathomed at
an early stage:

• The corresponding subproblem of a node is infeasible: All subproblems obtained by
branching from this node would also be infeasible.

• The subproblem has a feasible integer solution: The corresponding optimal objective
function value, if less than the known upper bound, provides a better upper bound for
the optimal solution.

• The continuous solution of a subproblem has a minimal solution value greater than the
actual upper bound: Further branching from the node would only increase function
values, and there is no chance to find a better integer solution.
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Fathoming is critical for nonconvex problems, since it might cut off the optimal solution.
In general, the procedure is continued until all free nodes are either explored or fathomed.
The integer feasible node with minimal value represents the solution of the mixed integer
problem or we get the information that no feasible mixed integer solution exists.

At each node of the enumeration tree, one has to check whether the actual values of
all integer variables are integral and whether the subproblem is feasible. Furthermore, the
current objective value has to be compared with the best known upper bound. Whenever
possible, fathoming is initialized and the memory required for this node can be saved. Oth-
erwise, some node data, i.e., the objective value, the position within the search tree and
the corresponding bounds, must be stored as part of the tree. Next, a branching variable is
selected and a new node is created by adjusting bounds of integer variables.

Thus, there remain two important steps by which the performance of a branch and bound
algorithm is heavily influenced, the selection of a branching variable and the choice of the
subsequent node of the enumeration tree to be explored next. The following options are
implemented in the current version of BFOUR:

1. Selection of an integer variable with a fractional solution value for branching:

(a) maximal fractional branching: Select a fractional integer variable value from the
solution of the relaxed subproblem with largest distance from nearest integer
value.

(b) minimal fractional branching: As above, with smallest distance from nearest in-
teger value.

(c) branching by priorities: Select a fractional integer variable from the solution of
the relaxed subproblem with highest user-defined priority.

2. Search for a free node from where branching, i.e., the generation of two new subprob-
lems, is started:

(a) best of two: The optimal objective function values of the two child nodes are
compared and the node with a lower value is chosen. If both are leafs, i.e., if the
corresponding solution is integral, or if the corresponding problem is infeasible or
if there is already a better integral solution, strategy best of all is started.

(b) best of all: All free nodes are explored and the node with lowest objective function
value is selected.

(c) depth first: Select a child node whenever possible. If the node is a leaf, the best
of all strategy is applied.

BFOUR also supports the input of an integer feasible point when starting the branch
and bound process. This integral solution might either be known in advance or might be
found by some primal heuristics. Depending on the distance of the corresponding objective
function value from the optimal value, a solution is usually found much faster.
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There are additional options which allow the user to influence the branch and bound
process especially in connection with the mixed integer quadratic programming code MIQP.
The user is allowed to interact with BFOUR after a current node is evaluated and a branch-
ing variable is selected. In other words, the standard branch and bound process can be
interrupted and the user can provide additional information that might be useful for the
enumeration. For example, it is possible to provide an external branching direction, espe-
cially in combination with depth first search, see Lehmann and Schittkowski [6]. Furthermore,
one could supply sharper lower bounds for the current node to allow earlier fathoming by
exploiting dual information according to Leyffer and Fletcher [7].

To exploit warm starts, one should know how two successive subproblems are related.
Thus, BFOUR passes information whether a current node is a child node or possesses the
same parent node or is a nephew, i.e., a child node of a node possessing the same parent node
or that no relation exists. BFOUR also reports the index of the selected branching variable
at the current node, which can be beneficial for determining an external branching direction,
e.g., according to the value of a Lagrangian function. Furthermore, BFOUR informs the
user about the following events:

• new best solution is found

• current node is integral

• current node is marked, i.e., a leaf of the search tree

In addition, BFOUR prints the current lower bound, i.e., the lowest function value of an
unexplored fractional node. This allows the user to monitor progress and to estimate the
quality of the best known integral solution.

In the nonconvex case, the fathoming procedure is adapted to reduce the probability of
a cut-off of the optimal solution. Usually, much more subproblems need to be solved.
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3 Implementation and Program Documentation

The latest version of BFOUR is enhanced as outlined above and especially tuned to cooperate
with the convex continuous quadratic programming solver QL for solving mixed integer
quadratic programs.

The user has to provide function values for F(Y) in the same program, which executes
also BFOUR, according to the following rules:

1. Choose starting values for the variables to be optimized, and store them in Y.

2. Compute a solution of the underlying mixed-integer optimization problem subject to
the given initial bounds and store the solution in Y and the optimum objective function
value in F. Treat Y as continuous variable vector.

3. Set IFAIL=0 and execute BFOUR.

4. If BFOUR terminates with IFAIL=0, the internal stopping criteria are satisfied.

5. In case of IFAIL<0, an error occurred.

6. If BFOUR returns IFAIL=1, compute an optimal solution of the underlying mixed-
integer optimization problem subject to the lower and upper bounds found in YL
and YU, respectively, and store the solution in Y and the optimum objective function
value in F. If a feasible solution exists, set IFEAS=.TRUE. and set IFEAS=.FALSE.
otherwise. Then call MISQP again.

Note that the applied Fortran dialect is as close as possible to F77 to allow straightforward
transition from FORTRAN to C by f2c. The calling sequence and the meaning of the
parameters are described below.

Usage:

CALL BFOUR( NINT, Y, F, IFEAS, YL,
/ YU, YBEST, ACC, PRIORS, MAXNDS,
/ IFAIL, IOUT, IPRINT, B4IOPT, B4LOPT,
/ B4ROPT, RW, LRW, IW, LIW,
/ LW, LLW )

Definition of the parameters:

7



NINT: Input parameter for the number of integer variables

Y(NINT): Double precision input array containing the optimal relaxed integer
variable values of the solution of the subproblem

F: Double precision input parameter for the optimal objective function
value at the current node

IFEAS: Logical input parameter to indicate whether current node possesses
a feasible solution or not

YL(NINT): Integer input and output array for lower bounds of the integer vari-
ables Y, replaced subsequently by the actual node bounds

YU(NINT): As above for upper bounds

YBEST(NINT): Double precision input and output array for the integer values of
a feasible solution, if known at the first call, subsequently replaced
the best integer feasible solution found so far

ACC: Double precision input parameter for a tolerance to identify integer
values

PRIORS(NINT): Integer input array for priority values of integer variables to deter-
mine the branching variable in combination with branching strategy
3, i.e., B4IOPT(1)=3

MAXNDS: Integer input parameter for the maximum number of branch and
bound nodes

IFAIL: Initially, IFAIL must be set to zero. Subsequently, IFAIL might get
one of the subsequent values:

-3 : original relaxed problem not solvable
-2 : no integral solution found within maximum number of nodes
-1 : integral solution does not exist
0 : optimal solution found
1 : solve new branch and bound problem, corresponding

bounds are found in YL and YU
2 : integral solution found, but optimality not yet proved

because of reaching maximum number of nodes
3 : wrong input parameter, either ACC, MAXNDS, IOUT,

IPRINT, B4IOPT(1) or B4IOPT(2)
4 : number of integer variables changed
5 : working array to small
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IOUT: Integer input parameter for the output unit number, i.e., all write-
statements start with WRITE(IOUT,...

IPRINT: Integer input parameter for the output level:

0 : no output

1 : error messages, root node and solution output

2 : in addition, output of improved solutions

3 : one line for each node with status, i.e.,

* - fractional feasible node
B - new best integer feasible solution

I - infeasible node
M - marked node

4 : output of index and bounds for all nodes

5 : full output of all node data

B4IOPT(20): Integer option array

B4IOPT(1): Input parameter for selecting a branching variable,

1 : maximum fractional branching

2 : minimum fractional branching

3 : branching according to priorities

B4IOPT(2): Input parameter for selecting the next node,

1 : best of all
2 : best of two
3 : depth first

B4IOPT(3): Output parameter defining the relation of two

successive nodes, required for warm starts:

0 : arbitrary node, i.e., no specific relation

1 : child of previous node

2 : same parent node as previous node

3 : nephew of previous node

B4IOPT(4): Input parameter controlling a BFOUR run, to be

initialized by zero for standard execution,

0 : standard BFOUR run
1 : interrupt after node evaluation is completed,

BFOUR continued with B4IOPT(4)=2 or 3

2 : continuing an interrupted run with improved
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bounds
3 : continuing an interrupted run with external

branching direction given by B4IOPT(6)

B4IOPT(5): Output parameter for the index of the selected branching variable
at current node

B4IOPT(6): Input parameter for an external branching direction,

0 : branch left at current node
1 : branch right at current node

B4LOPT(20): Logical option array

B4LOPT(1): Output parameter indicating that a new best integer feasible solu-
tion found (.TRUE.)

B4LOPT(2): Output parameter indicating that current node is integral (.TRUE.)

B4LOPT(3): Output parameter indicating that current node is marked (.TRUE.)

B4LOPT(4): Input parameter indicating that the underlying problem is convex
(.TRUE.)

B4LOPT(5): Input and output parameter to indicate a known integer feasible
solution (.TRUE.); if set to true when calling BFOUR, B4ROPT(3)
and YBEST must be set correctly

B4LOPT(6): Input parameter indicating first call (.TRUE.)

B4ROPT(20): Double precision option array

B4ROPT(1): Input parameter for a worse bound, to be used in connection with
B4IOPT(4)=2

B4ROPT(2): Output parameter for the actual lower bound

B4ROPT(3): Input and output parameter for the function value of the best
known integer feasible solution, used to pass an integer feasible
point to BFOUR at first call if B4LOPT(5) and YBEST are cor-
rectly set

RW(LRW): Double precision working array

LRW: Integer input parameter for the length of RW, must be at least
3*MAXNDS+2*NINT+5

IW(LIW): Integer working array

LIW: Integer input parameter for length of IW, must be at least
6*MAXNDS+7
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LW: Logical working array

LLW: Integer input parameter for length of LW, must be at least
3*NINT+2

For a standard execution of BFOUR not exploiting the special features designed for
MIQL, only the parameter options of Table 1 are relevant. All other options can be set to
arbitrary values, e.g., zero. Initialization of working arrays is not required.

Option Value

B4IOPT(1) 1 or 2
B4IOPT(2) 1, 2 or 3
B4IOPT(4) 0
B4LOPT(4) .TRUE. or .FALSE.
B4LOPT(5) .FALSE.
B4LOPT(6) .TRUE.

Table 1: Option Setting for a Standard BFOUR Run

The subsequent Fortran program illustrates the standard usage of BFOUR in combination
with the continuous quadratic solver QL, see Schittkowski [11] to solve the following strictly
convex integer quadratic program.

min
y1,y2∈Z

1

2

(
(y1 − 3.4)2 + (y2 − 12.6)2

)
y1 + y2 ≥ 15 (7)

1 ≤ y1 ≤ 10; 3 ≤ y2 ≤ 20

IMPLICIT NONE

INTEGER N, M, MAXNDS, LRWB4, LIWB4, LLWB4, LRW, LIW, LLW

PARAMETER (N = 2,

/ M = 1,

/ MAXNDS = 100,

/ LRWB4 = 3*MAXNDS + 2*N + 5,

/ LIWB4 = 6*MAXNDS + 7,

/ LLWB4 = 3*N + 2,

/ LRW = LRWB4 + 3*N*N/2 + 10*N + 2*M + 1,

/ LIW = LIWB4 + N,

/ LLW = LLWB4)

INTEGER IFAIL, IOUT, IPRINT, PRIORS(N), B4IOPT(20),

/ IW(LIW), IFAILQL, I

DOUBLE PRECISION Y(N), F, YL(N), YU(N),

/ C(N,N), D(N), A(M,N), B(M), U(N+N+M),

/ YBEST(N), ACC, B4ROPT(20), RW(LRW)
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LOGICAL LFEAS, B4LOPT(20), LW(LLW)

C

C Problem data

C

YL(1) = 1.0D0

YU(1) = 10.0D0

YL(2) = 3.0D0

YU(2) = 20.0D0

C(1,1) = 1.0D0

C(1,2) = 0.0D0

C(2,1) = 0.0D0

C(2,2) = 1.0D0

D(1) = -3.4D0

D(2) = -12.6D0

A(1,1) = 1.0D0

A(1,2) = 1.0D0

B(1) = -15.0D0

C

C Initialization

C

IFAIL = 0

IFAILQL = 0

IOUT = 6

IPRINT = 3

ACC = 1.0D-14

B4IOPT(1) = 1 !max frac branching

B4IOPT(2) = 3

B4IOPT(4) = 0

B4LOPT(4) = .TRUE.

B4LOPT(5) = .FALSE.

B4LOPT(6) = .TRUE.

C

C Main loop

C

1 CONTINUE

CALL QL( M, 0, M, N, N, M+N+N, C, D, A, B, YL, YU, Y, U,

/ ACC, 1, IOUT, IFAILQL, 1, RW(LRWB4+1), LRW,

/ IW(LIWB4+1), LIW)

F = 0.5D0*(Y(1)**2 + Y(2)**2) + D(1)*Y(1) + D(2)*Y(2)

IF (IFAILQL.GT.0) THEN

LFEAS = .FALSE.

ELSE

LFEAS = .TRUE.

END IF
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CALL BFOUR( N, Y, F, LFEAS, YL, YU, YBEST, ACC, PRIORS,

/ MAXNDS, IFAIL, IOUT, IPRINT, B4IOPT, B4LOPT,

/ B4ROPT, RW, LRWB4, IW, LIWB4, LW, LLWB4)

IF (IFAIL.GE.1) GOTO 1

C

C Done

C

STOP

END

The following output should appear on screen:

--------------------------------------------------------------------

Start of the Mixed-Integer Branch-and-Bound Code BFOUR

Version 3.0 (Mar 2013)

--------------------------------------------------------------------

Parameters:

Number of integer variables 2

Maximal number of nodes 100

Integer tolerance 0.10D-13

Branching strategy 1

Node selection 3

Convex problem

No initial integer feasible solution known

Output in the following order:

S - status of current node

B ... branched node

I ... infeasible node

M ... marked node

* ... other node

IT - iteration count

ND - index of current node

F - objective function value

P - index of parent node

LB - lower bound

UB - upper bound

S IT ND F P LB UB

------------------------------------------------------------------------

* 1 1 0.000000D+00 0 0.000000D+00 0.100000D+31

* 2 2 0.180000D+00 1 0.000000D+00 0.100000D+31
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B 3 3 0.260000D+00 2 0.000000D+00 0.260000D+00

* 4 3 0.800000D-01 1 0.000000D+00 0.260000D+00

B 5 4 0.160000D+00 3 0.000000D+00 0.160000D+00

M 6 4 0.260000D+00 3 0.800000D-01 0.160000D+00

Optimal solution:

Number of explored subproblems: 6

Highest index: 3

F(Y) = 0.16000000

Y( 1) = 3.0000000

Y( 2) = 13.000000

4 Numerical Results

We show some numerical results obtained by BFOUR in combination with the quadratic
solver QL as implemented in a Fortran subroutine called MIQL for mixed integer quadratic
programming (MIQP). The first set of test problems are MIQP subproblems as established by
the nonlinear mixed integer solver MISQP, see Exler and Schittkowski [3, 4]. Out of a set of
100 test examples, nine problems are selected where MIQL needs at least 0.1 seconds. Some
characteristic data of the MINLP test problems are presented in Table 2. Six test problems

problem continuous integer inequality equality
variables variables constraints constraints

MISQP57 2 4 0 1
MISQP60 0 24 35 0
MISQP62 0 35 44 0
MISQP63 0 48 53 0
MISQP66 16 19 1 17
MISQP83 0 20 20 0
MISQP115 9 27 12 9
MISQP116 9 27 12 9
MISQP117 9 27 12 9

Table 2: Problem Characteristics

belong to the GAMS MINLP-Library, see Bussieck, Drud, and Meeraus [1], the remaining
three are test problems for oil and gas production. These problems, MISQP115, MISQP116
and MISQP117, possess multiple global optima leading to non-comparable performance.
Note that MISQP requires the solution of many MIQP subproblems.

Table 3 shows the influence of the different node selection strategies on the performance
of MIQL. Also some of the more advanced options of BFOUR are evaluated. The strategy
best of all selects a node with lowest function value, whereas best of two always selects a child
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node with better function value. Depth first dives into the search tree by selecting a child
problem without evaluating the other child node. There are special tuning possibilities for
all node selection strategies including warm starts. We selected maximal fractional branching
as branching variable selection strategy for this evaluation, because it is clearly superior as
can be seen in Table 4.

strategy nodes time (sec)

best of all standard 115,588 36.3
best of all improved bounds 99,717 40.3
best of two standard 122,516 33.8
best of two warm start 121,996 26.5
depth first standard 336,783 136.9
depth first warm start 302,145 44.5
depth first external directions 121,739 33.6
depth first warm start, external directions 122,055 26.4

Table 3: Node Selection Strategies and BFOUR Options

Obviously, warm starts and the calculation of the Lagrangian function value to determine
the search direction for depth first are very beneficial. But Table 3 indicates also how
important it is to adapt the search process to the outer optimization algorithm.

The subsequent Table 4 contains numerical results to compare maximal fractional branch-
ing and minimal fractional branching. We report only the fastest MIQL run for each node
selection strategy. Strategy minimal fractional branching exhibits worse performance com-
pared to maximal fractional branching.

strategy nodes time (sec)

best of all, maximal fractional branching 115,588 36.3
best of all, minimal fractional branching 184,794 78.0
best of two, maximal fractional branching 121,996 26.5
best of two, minimal fractional branching 191,406 47.3
depth first, maximal fractional branching 122,055 26.4
depth first, minimal fractional branching 206,482 49.3

Table 4: Branching Variable Selection Strategies

The following results are obtained by some benchmark test examples of Mittelmann [8].
Since MIQL is a dense solver and cannot exploit sparsity patterns, some of these test prob-
lems cannot be solved because of their dimensions. For other test cases, the continuous
relaxation is not solvable without special adjustments. Therefore, we only consider the test
cases ibell3a and imas284, see Table 5 for some characteristic data. Results for different
node selection strategies, including tuning, are presented in Table 6.
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problem constraints number of number of non-zero density non-zero density
variables integer of constraint of objective

variables matrix function matrix

ibell3a 104 122 60 3.1% 0.4%
imas284 68 151 150 95.3% 0.6%

Table 5: Characteristics of Mittelmann Test Examples

problem branching strategy node selection nodes time (sec)

ibell3a maximal fraction best of all 61,588 1,201
ibell3a maximal fraction best of two 63,777 1,125
ibell3a maximal fraction depth first 74,720 952
imas284 maximal fraction best of all 142,241 3,610
imas284 maximal fraction best of two 186,412 3,576
imas284 maximal fraction depth first 142,434 1,940

Table 6: Results for Mittelmann Test Examples

5 Conclusions

We present a generally applicable branch and bound algorithm for integer optimization.
Special features of the underlying mathematical model allow warm starts and user interac-
tion. They are exploited as part of the mixed integer quadratic solver MIQL in combination
with the continuous quadratic solver QL. We evaluate different options of BFOUR on mixed
integer quadratic and mixed integer nonlinear programs and were able to suggest standard
settings depending on the abilities of the continuous solver called by BFOUR.

The depth first strategy is especially profitable if warm starts are possible, e.g., when
solving MIQP problems in combination with the primal-dual quadratic programming solver
QL, see Schittkowski [11], Goldfarb and Idnani [5], or Powell [9]. In addition, the search tree
usually gets smaller, i.e., there are fewer unexplored nodes. The disadvantage is, that the
child node is arbitrarily selected leading to a larger number of subproblems to be solved. But
BFOUR provides the possibility to use a branching direction given by the user, which might
overcome this disadvantage of blind diving, see MIQL of Lehmann and Schittkowski [6].

The best of all method usually needs the lowest number of subproblems until termination.
Furthermore, it increases the lower bound more quickly. On the other hand, a first integer
feasible solution is usually obtained quite late, so that fathoming is not very efficient at the
beginning. Warm starts are more or less impossible, since in general no relation between
subsequent subproblems exists.

Best of two strikes the balance between the other two node selection strategies. The
number of subproblems required in the solution process is usually moderate compared to
depth first, but larger than best of all. Warm starts are also possible since most of the
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subproblems are closely related.
In general, the quality of the node selection strategy depends heavily on the abilities of

the continuous solver interacting with the branch and bound framework. Furthermore, the
implementation plays a crucial role, e.g., one can overcome the disadvantage of depth first
by imposing sensible branching directions, such that the number of nodes is comparable to
best of two. Moreover, it could be very beneficial for best of all if an integer feasible starting
point is known, enhancing the efficiency of fathoming.

In general, we conclude that maximal fractional branching is superior to minimal frac-
tional branching. Only if the best integer feasible solution is located very close to the relaxed
solution, minimal fractional branching is a better choice. Branching by priorities might lead
to good results, if the user is able to supply information on beneficial branching variables.
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