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Abstract

The Fortran subroutine NLPINF solves constrained min-max 0r L∞ nonlin-
ear programming problems, where the maximum of absolute nonlinear function
values is to be minimized. It is assumed that all functions are continuously
differentiable. By introducing one additional variable and nonlinear inequality
constraints, the problem is transformed into a general smooth nonlinear pro-
gram subsequently solved by the sequential quadratic programming (SQP) code
NLPQLP. An important application is data fitting, where the distance of ex-
perimental data from a model function evaluated at given experimental times is
minimized by the L∞ or maximum norm, respectively. The usage of the code is
documented, and two illustrative examples are presented.
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1 Introduction

Min-max optimization problems arise in many practical situations, for example in
approximation or when fitting a model function to given data in the L∞-norm. In this
particular case, a mathematical model is available in form of one or several equations,
and the goal is to estimate some unknown parameters of the model. Exploited are
available experimental data, to minimize the distance of the model function, in most
cases evaluated at certain time values, from measured data at the same time values.
An extensive discussion of data fitting especially in case of dynamical systems is given
by Schittkowski [8], and the code NLPINF is part of the software system EASY-FIT.

The mathematical problem we want to solve, is given in the form

x ∈ IRn :

min max{|fi(x)|, i = 1, . . . , l}
gj(x) = 0 , j = 1, . . . , me ,

gj(x) ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu .

(1)

It is assumed that f1, . . ., fl and g1, . . ., gm are continuously differentiable functions.
Some test examples for L∞-approximation are studied in Schittkowski [13, 15],

where the number of data points is extremely large, i.e., up to 60,000,000. An active
set strategy is applied to reduce the size of the Jacobian matrix of the quadratic
programming subproblem, see Schittkowski [7] for details.

In this paper, we consider the question how an existing nonlinear programming
code can be used to solve constrained min-max problems in an efficient and robust
way after a suitable transformation. In a very similar way, also L1 and least squares
problems can be solved efficiently by an SQP code, see Schittkowski [8, 11, 14, 16].

The transformation of an L∞ problem into a special nonlinear program is described
in Section 2. Sections 3 to 5contains a complete documentation of the Fortran code
and two example implementations.

2 The Transformed Optimization Problem

We consider the constrained nonlinear min-max or L∞ problem (1), and introduce an
additional variables z and 2l additional nonlinear equality constraints of the form

fi(x) + z ≥ 0 ,

−fi(x) + z ≥ 0 ,
(2)
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i = 1, . . ., l. The following equivalent problem is to be solved by an SQP method,

(x, z) ∈ IRn+1 :

min z

gj(x) = 0 , j = 1, . . . , me ,

gj(x) ≥ 0 , j = me + 1, . . . , m ,

fi(x) + z ≥ 0 , i = 1, . . . , l ,

−fi(x) + z ≥ 0 , i = 1, . . . , l ,

xl ≤ x ≤ xn ,

z ≥ 0 .

(3)

In this case, the quadratic programming subproblem wich has to be solved in each step
of an SQP method, has the form

(d, e) ∈ IRn+1 :

min 1
2
(dT , e)Bk

(
d
e

)
+ e

∇gj(xk)
Td+ gj(xk) = 0 , j = 1, . . . , me ,

∇gj(xk)
Td+ gj(xk) ≥ 0 , j = me + 1, . . . , m ,

∇fi(xk)
Td+ e+ fi(xk) + zk ≥ 0 , i = 1, . . . , l ,

−∇fi(xk)
Td+ e− fi(xk) + zk ≥ 0 , i = 1, . . . , l ,

xl − xk ≤ d ≤ xu − xk ,

e ≥ 0 .

(4)

Bk ∈ IRn+1× IRn+1 is a quasi-Newton update matrix of the Lagrangian function of (3).
A new iterate is then obtained from

xk+1 = xk + αkdk , zk+1 = zk + αkek ,

where dk ∈ IRn and ek ∈ IR are a solution of (4) and αk a steplength parameter obtained
from forcing a sufficient descent of a merit function.

The proposed transformation (3) is independent of the SQP method used, so that
available codes can be used in the form of a black box. However, an active set strategy
is recommended to reduce the number of constraints, if l becomes large, e.g., the code
NLPQLB [13].

A final remark concerns the theoretical convergence of the algorithm. Since the
original problem is transformed into a general nonlinear programming problem, we can
apply all convergence results known for SQP methods. If an augmented Lagrangian
function is preferred for the merit function, a global convergence theorem is found in
Schittkowski [3], see also [7] for convergence of the active set strategy. The theorem
states that when starting from an arbitrary initial value, a Karush-Kuhn-Tucker point
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is approximated, i.e., a point satisfying the necessary optimality conditions. If, on the
other hand, an iterate is sufficiently close to an optimal solution and if the steplength
is 1, then the convergence speed of the algorithm is superlinear, see Powell [1] for
example. This remark explains the fast final convergence rate one observes in practice.

3 Calling Sequence

In this section, we describe the arguments of subroutine NLPINF in detail.

Usage:

CALL NLPINF ( M, ME, LMMAX, L, N,
/ NMAX, LMNN2, X, FUNC, RES,
/ GRAD, U, XL, XU, ACC,
/ ACCQP, RESSIZ, MAXFUN MAXIT, MAXNM,
/ RHOB, IPRINT, IOUT, IFAIL, WA,
/ LWA, KWA, LKWA, LOGWA, LLOGWA )

Definition of the parameters:

M : Number of constraints, i.e., m.

ME : Number of equality constraints, i.e., me.

LMMAX : Row dimension of GRAD and dimension of FUNC. LMMAX
must be at least one and not smaller than L + M.

L : Number of terms in objective function, i.e., l.

N : Number of variables, i.e., n.

NMAX : Dimensioning parameter, at least two and greater than N +
1.

LMNN2 : Dimensioning parameter, must be set to M + 2*N + 2*L +
4 when calling NLPINF.

X(NMAX) : On input, the first N positions of X have to contain an initial
guess for the solution. On return, X is replaced by the last
computed iterate.
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FUNC(LMMAX) : Function values passed to NLPINF by reverse communication,
i.e., the first L positions contain the L residual values fi(x),
i = 1, . . ., l, the subsequent M coefficients the constraint
values gj(x), j = 1, . . . ,m.

RES : On return, RES contains the objective function value
max{|f1(x)|, . . . , |fl(x)|}.

GRAD(LMMAX, The array is used to pass gradients of residuals and constraints

LNMAX) : to NLPINF by reverse communication. In the driving pro-
gram, the row dimension of GRAD must be equal to LM-
MAX. The first L rows contain L gradients of residual func-
tions ∇fi(x) at x, i = 1, . . ., l, the subsequent M rows gradi-
ents of constraint functions ∇gj(x), j = 1, . . . , m.

U(LMNN2) : On return, U contains the multipliers with respect to the last
computed iterate. The first M locations contain the multipli-
ers of the M nonlinear constraints, the subsequent N locations
the multipliers of the lower bounds, and the following N lo-
cations the multipliers of the upper bounds. At an optimal
solution, all multipliers with respect to inequality constraints
should be nonnegative.

XL(NMAX), On input, the one-dimensional arrays XL and XU must

XU(NMAX) : contain the upper and lower bounds of the variables.

ACC : The user has to specify the desired final accuracy (e.g. 1.0D-
7). The termination accuracy should not be much smaller
than the accuracy by which gradients are computed.

ACCQP : The tolerance is passed to the QP solver to perform several
tests, for example whether optimality conditions are satisfied
or whether a number is considered as zero or not. If ACCQP
is less or equal to zero, then the machine precision is computed
by NLPQLP and subsequently multiplied by 1.0D+4.

RESSIZE : The user must indicate a guess for the approximate size of the
objective function. RESSIZE must not be negative.

MAXFUN : The integer variable defines an upper bound for the number
of function calls during the line search (e.g. 20).

MAXIT : Maximum number of outer iterations, where one iteration cor-
responds to one formulation and solution of the quadratic
programming subproblem, or, alternatively, one evaluation of
gradients (e.g. 100).

5



MAXNM : Stack size for storing merit function values at previous itera-
tions for non-monotone line search (e.g. 10).

RHOB : Parameter for initializing a restart in case of IFAIL=2 by
setting the BFGS-update matrix to rhob*I, where I denotes
the identity matrix. The number of restarts is bounded by
MAXFUN. No restart is performed if RHOB is set to zero.
Must be non-negative (e.g. 100).

IPRINT : Specification of the desired output level:

0 - No output of the program.

1 - Only final convergence analysis.

2 - One line of intermediate results for each iteration.
3 - More detailed information for each iteration.
4 - More line search data displayed.

IOUT : Integer indicating the desired output unit number, i.e., all
write-statements start with ’WRITE(IOUT,... ’.

IFAIL : The parameter shows the reason for terminating a solution
process. Initially IFAIL must be set to zero. On return IFAIL
could contain the following values:

-2 - Compute new gradient values.

-1 - Compute new function values.

0 - Optimality conditions satisfied.

1 - Stop after MAXIT iterations.

2 - Uphill search direction.

3 - Underflow when computing new BFGS-update matrix.

4 - Line search exceeded MAXFUN iterations.
5 - Length of a working array too short.

6 - False dimensions, M>MMAX, N≥NMAX, or

MNN2 �=M+N+N+2.

7 - Search direction close to zero at infeasible iterate.
8 - Starting point violates lower or upper bound.

9 - Wrong input parameter, e.g., MODE, IPRINT, IOUT.

10 - Inconsistency in QP, division by zero.

>100 - Error message of QP solver.

WA(LWA) : WA is a real working array of length LWA.

LWA : Length of the real working array WA. LWA must be at least
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5*N*N/2 + (L+L+M)*N + 24*L + 12*M + 45*N + 250.

KWA(LKWA) : KWA is an integer working array of length LKWA.

LKWA : Length of the integer working array KWA. LKWA must be at
least N + 28. On return, KWA(1) and KWA(2) contain the
number of function and derivative evaluations, respectively.

LOGWA(LLOGWA) : Logical working array of length LLOGWA.

LLOGWA : Length of the logical array LOGWA. The length LLOGWA
of the logical array must be at least 4*L + 2*M + 10.

4 Program Organization

All declarations of real numbers must be done in double precision. Subroutine NLPINF
must be linked with the user-provided main program, the SQP code NLPQLP [12], and
the quadratic programming code QL [10].

NLPINF is implemented in form of a Fortran subroutine. Model functions and
gradients are passed by reverse communication. The user has to provide functions and
gradients in the same program which executes NLPINF, according to the following
rules:

1. Choose starting values for the variables to be optimized, and store them in the
first N positions of X.

2. Compute residual and constraint function values values, and store them in a one-
dimensional double precision array FUNC. The first L positions contain the L
residual values fi(x), i = 1, . . ., l, the subsequent M coefficients the constraint
values gj(x), j = 1, . . ., m.

3. Compute gradients of residual and constraint functions, and store them in a two-
dimensional double precision array GRAD. The first L rows contain gradients of
residual functions ∇fi(x) at x, i = 1, . . ., l, the subsequent M rows gradients of
constraint functions ∇gj(x), j = 1, . . ., m.

4. Set IFAIL=0 and execute NLPINF.

5. If NLPINF returns with IFAIL=-1, compute residual function values and con-
straint values for the arguments found in X, and store them in FUNC in the order
shown above. Then call NLPINF again, but do not change IFAIL.

6. If NLPINF terminates with IFAIL=-2, compute gradient values subject to vari-
ables stored in X, and store them in GRAD as indicated above. Then call
NLPINF again without changing IFAIL.

7. If NLPINF terminates with IFAIL=0, the internal stopping criteria are satisfied.
The variable values found in X are considered as a local solution of the min-max
optimization problem.
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8. In case of IFAIL>0, an error occurred.

If analytical derivatives are not available, additional function calls are required for
gradient approximations, for example by forward differences, two-sided differences, or
even higher order formulae.

Some of the termination reasons depend on the accuracy used for approximating
gradients. If we assume that all functions and gradients are computed within ma-
chine precision and that the implementation is correct, there remain only the following
possibilities that could cause an error message:

1. The termination parameter ACC is too small, so that the numerical algorithm
plays around with round-off errors without being able to improve the solution.
Especially the Hessian approximation of the Lagrangian function becomes unsta-
ble in this case. A straightforward remedy is to restart the optimization cycle
again with a larger stopping tolerance.

2. The constraints are contradicting, i.e., the set of feasible solutions is empty. There
is no way to find out, whether a general nonlinear and non-convex set possesses a
feasible point or not. Thus, the nonlinear programming algorithms will proceed
until running in any of the mentioned error situations. In this case, there the
correctness of the model must be checked very carefully.

3. Constraints are feasible, but some of them there are degenerate, for example if
some of the constraints are redundant. One should know that SQP algorithms
require satisfaction of the so-called constraint qualification, i.e., that gradients
of active constraints are linearly independent at each iterate and in a neighbor-
hood of the optimal solution. In this situation, it is recommended to check the
formulation of the model.

However, some of the error situations do also occur, if because of wrong or non-
accurate gradients, the quadratic programming subproblem does not yield a descent
direction for the underlying merit function. In this case, one should try to improve the
accuracy of function evaluations, scale the model functions in a proper way, or start
the algorithm from other initial values.

5 Examples

To give a simple example how to organize the code in case of two explicitly given
functions, we consider Rosenbrock’s banana function, see test problem TP1 of Hock
and Schittkowski [2],

x1, x2 ∈ IR : minmax{|10(x2 − x2
1)|, |1− x1|} (5)

The Fortran source code for executing NLPINF is listed below. Gradients are computed
analytically.
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IMPLICIT NONE

INTEGER N, M, ME, L, LMNN2, LWA, LKWA, LLOGWA

PARAMETER (N = 4, M = 0, ME = 0, L = 2)

PARAMETER (LMNN2 = M + 2*N + 3*L + 2,

/ LWA = 5*N*N/2 + (L+L+M)*N + 24*L + 12*M

/ + 40*N + 250,

/ LKWA = N + 28,

/ LLOGWA = 4*L + 2*M + 10)

INTEGER MAXFUN, MAXIT, IPRINT, MAXNM, IOUT, IFAIL,

/ KWA(LKWA)

DOUBLE PRECISION RES, ACC, ACCQP, RESSIZ, RHOB, EPS,

/ X(N+2), FUNC(L+M), GRAD(L+M,N),

/ U(LMNN2), XL(N+2), XU(N+2), WA(LWA)

LOGICAL LOGWA(LLOGWA)

C

C set parameters

C

ACC = 1.0D-14

ACCQP = ACC

RESSIZ = 0.0D0

RHOB = 0.0D0

MAXFUN = 20

MAXIT = 100

MAXNM = 0

IPRINT = 2

IOUT = 6

IFAIL = 0

C

C starting values and bounds

C

X(1) = -1.2D0

XL(1) = -1.0D5

XU(1) = 1.0D5

X(2) = 1.0D0

XL(2) = -1.0D5

XU(2) = 1.0D5

C

C execute NLPINF by reverse communication

C

1 CONTINUE

IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-1)) THEN

FUNC(1) = 10.0D0*(X(2) - X(1)**2)

FUNC(2) = 1.0D0 - X(1)

ENDIF

IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-2)) THEN

GRAD(1,1) = -20.0D0*X(1)
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GRAD(1,2) = 10.0D0

GRAD(2,1) = -1.0D0

GRAD(2,2) = 0.0D0

ENDIF

C

C call NLPINF

C

CALL NLPINF(M, ME, L+M, L, N, N+2, LMNN2, X, FUNC, RES,

/ GRAD, U, XL, XU, ACC, ACCQP, RESSIZ, MAXFUN, MAXIT,

/ MAXNM, RHOB, IPRINT, IOUT, IFAIL, WA, LWA, KWA,

/ LKWA, LOGWA, LLOGWA)

IF (IFAIL.LT.0) GOTO 1

C

STOP

END

The following output appears on the screen:

--------------------------------------------------------------------

START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

--------------------------------------------------------------------

Parameters:

N = 5

M = 4

ME = 0

MODE = 0

ACC = 0.1000D-13

ACCQP = 0.1000D-13

STPMIN = 0.1000D-13

MAXFUN = 20

MAXNM = 0

MAXIT = 100

IPRINT = 2

Output in the following order:

IT - iteration number

F - objective function value

SCV - sum of constraint violations

NA - number of active constraints

I - number of line search iterations

ALPHA - steplength parameter

DELTA - additional variable to prevent inconsistency

KKT - Karush-Kuhn-Tucker optimality criterion
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IT F SCV NA I ALPHA DELTA KKT

--------------------------------------------------------------------

1 0.00000000D+00 0.66D+01 4 0 0.00D+00 0.00D+00 0.75D+01

2 0.16121212D+01 0.23D+00 4 1 0.10D+01 0.00D+00 0.33D+00

3 0.12941070D+01 0.00D+00 4 1 0.10D+01 0.00D+00 0.13D+01

4 0.67818712D+00 0.30D+01 4 2 0.48D+00 0.00D+00 0.67D+00

5 0.25925355D+00 0.18D+01 4 1 0.10D+01 0.00D+00 0.41D+00

6 0.00000000D+00 0.67D+00 4 1 0.10D+01 0.00D+00 0.13D-03

7 0.19259299D-33 0.00D+00 4 1 0.10D+01 0.00D+00 0.11D-30

--- Final Convergence Analysis at Last Iterate ---

Objective function value: F(X) = 0.19259299D-33

Solution values: X =

0.10000000D+01 0.10000000D+01 0.00000000D+00 0.00000000D+00

0.19259299D-33

Multiplier values: U =

0.00000000D+00 0.50000000D+00 0.00000000D+00 0.50000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00

Constraint values: G(X) =

0.19259299D-33 0.19259299D-33 0.19259299D-33 0.19259299D-33

Distance from lower bound: XL-X =

-0.10000100D+06 -0.10000100D+06 0.00000000D+00 0.00000000D+00

-0.10000000D+31

Distance from upper bound: XU-X =

0.99999000D+05 0.99999000D+05 0.00000000D+00 0.00000000D+00

0.10000000D+31

Number of function calls: NFUNC = 8

Number of gradient calls: NGRAD = 7

Number of calls of QP solver: NQL = 7

--- Final Convergence Analysis of NLPINF ---

Maximum function value: RES = 0.19259299D-33

Function values: F(X) =

0.00000000D+00 0.00000000D+00

Solution: X =

0.10000000D+01 0.10000000D+01 0.00000000D+00 0.00000000D+00

Multiplier values: U =

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

Number of function calls: NFUNC = 8

Number of derivative calls: NGRAD = 7
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Another example illustrates data fitting in the L∞ norm by NLPINF. The time-
dependent model function is

h(x, t) =
x1t(t + x2)

t2 + x3t+ x4

, (6)

i.e., n = 4 and x = (x1, . . . , x4)
T . The goal is to fit l = 11 given experimental data

i 1 2 3 4 5 6 7 8 9 10 11

ti 0.0625 0.0714 0.0823 0.1 0.125 0.167 0.25 0.5 1 2 4

yi 0.0246 0.0235 0.0323 0.0342 0.0456 0.0627 0.0844 0.16 0.1735 0.1947 0.1957

under two additional additional equality constraints, to hit the first and last data point
exactly,

g1(x) = h(x, t1)− y1 = 0 ,
g2(x) = h(x, tl)− yl = 0 .

(7)

The resulting optimization problem is

x ∈ IRn :

min max{|h(x, ti)− yi|, i = 1, . . . , l}
g1(x) = 0 ,

g2(x) = 0 ,

0 ≤ x .

(8)

The corresponding code and the displayed output of NLPINF are listed below.

IMPLICIT NONE

INTEGER N, M, ME, L, LMNN2, LWA, LKWA, LLOGWA

PARAMETER (N = 4, M = 2, ME = 2, L = 11)

PARAMETER (LMNN2 = M + 2*L + 2*N + 4,

/ LWA = 5*N*N/2 + (L+L+M)*N + 24*L + 12*M

/ + 40*N + 250,

/ LKWA = N + 28,

/ LLOGWA = 4*L + 2*M + 10)

INTEGER MAXFUN, MAXIT, IPRINT, MAXNM, IOUT, IFAIL,

/ KWA(LKWA), I, J

DOUBLE PRECISION RES, ACC, ACCQP, RESSIZ, RHOB, EPS,

/ X(N+2), FUNC(L+M), GRAD(L+M,N), U(LMNN2),

/ XL(N+2), XU(N+2), WA(LWA), T(L), Y(L), W(N)

LOGICAL LOGWA(LLOGWA)

DATA T/0.0625D0,0.0714D0,0.0823D0,0.1000D0,0.1250D0,

/ 0.1670D0,0.2500D0,0.5000D0,1.0000D0,2.0000D0,

/ 4.0000D0/

DATA Y/0.0246D0,0.0235D0,0.0323D0,0.0342D0,0.0456D0,

/ 0.0627D0,0.0844D0,0.1600D0,0.1735D0,0.1947D0,

/ 0.1957D0/

C
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C set parameters

C

ACC = 1.0D-14

ACCQP = 1.0D-14

RESSIZ = 1.0D0

RHOB = 0.0D0

MAXFUN = 20

MAXIT = 100

MAXNM = 20

IPRINT = 2

IOUT = 6

IFAIL = 0

C

C starting values and bounds

C

X(1) = 0.25D0

X(2) = 0.39D0

X(3) = 0.415D0

X(4) = 0.39D0

DO I = 1,N

XL(I) = 0.0D0

XU(I) = 1.0D5

ENDDO

C

C execute NLPINF by reverse communication

C

1 CONTINUE

IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-1)) THEN

DO J = 1,L

CALL H(T(J), Y(J), N, X, FUNC(J))

ENDDO

CALL H(T(1), Y(1), N, X, FUNC(L+1))

CALL H(T(L), Y(L), N, X, FUNC(L+2))

ENDIF

IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-2)) THEN

DO J = 1,L

CALL DH(T(J), N ,X, W)

DO I=1,N

GRAD(J,I) = W(I)

ENDDO

ENDDO

CALL DH(T(1), N, X, W)

DO I=1,N

GRAD(L+1,I) = W(I)

ENDDO

CALL DH(T(L), N, X, W)
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DO I=1,N

GRAD(L+2,I) = W(I)

ENDDO

ENDIF

C

C call NLPINF

C

CALL NLPINF(M, ME, L+M, L, N, N+2, LMNN2, X, FUNC, RES,

/ GRAD, U, XL, XU, ACC, ACCQP, RESSIZ, MAXFUN, MAXIT,

/ MAXNM, RHOB, IPRINT, IOUT, IFAIL, WA, LWA, KWA,

/ LKWA, LOGWA, LLOGWA)

IF (IFAIL.LT.0) GOTO 1

C

STOP

END

C

C data fitting function

C

SUBROUTINE H(T, Y, N ,X, F)

IMPLICIT NONE

INTEGER N

DOUBLE PRECISION T, Y, X(N), F

C

F = X(1)*T*(T + X(2))/(T**2 + X(3)*T + X(4)) - Y

C

RETURN

END

C

C partial derivatives

C

SUBROUTINE DH(T, N ,X, DF)

IMPLICIT NONE

INTEGER N

DOUBLE PRECISION T, X(N), DF(N)

C

DF(1) = T*(T + X(2))/(T**2 + X(3)*T + X(4))

DF(2) = X(1)*T/(T**2 + X(3)*T + X(4))

DF(3) = -X(1)*T**2*(T + X(2))/(T**2 + X(3)*T + X(4))**2

DF(4) = -X(1)*T*(T + X(2))/(T**2 + X(3)*T + X(4))**2

C

RETURN

END

--------------------------------------------------------------------

START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

--------------------------------------------------------------------
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Parameters:

N = 5

M = 24

ME = 2

MODE = 0

ACC = 0.1000D-13

ACCQP = 0.1000D-13

STPMIN = 0.1000D-13

MAXFUN = 20

MAXNM = 20

MAXIT = 100

IPRINT = 2

Output in the following order:

IT - iteration number

F - objective function value

SCV - sum of constraint violations

NA - number of active constraints

I - number of line search iterations

ALPHA - steplength parameter

DELTA - additional variable to prevent inconsistency

KKT - Karush-Kuhn-Tucker optimality criterion

IT F SCV NA I ALPHA DELTA KKT

--------------------------------------------------------------------

1 0.10000000D+01 0.55D-01 24 0 0.00D+00 0.00D+00 0.10D+01

2 0.14273413D-01 0.76D-02 3 1 0.10D+01 0.00D+00 0.12D-01

3 0.15957258D-01 0.38D-03 3 1 0.10D+01 0.00D+00 0.73D-02

4 0.12379500D-01 0.11D-03 4 1 0.10D+01 0.00D+00 0.12D-03

5 0.12346540D-01 0.16D-05 4 1 0.10D+01 0.00D+00 0.23D-03

6 0.12117156D-01 0.18D-04 4 1 0.10D+01 0.00D+00 0.13D-02

7 0.10853183D-01 0.58D-03 4 1 0.10D+01 0.00D+00 0.68D-03

8 0.10681358D-01 0.17D-05 5 1 0.10D+01 0.00D+00 0.79D-06

9 0.10681368D-01 0.45D-11 5 1 0.10D+01 0.00D+00 0.34D-11

10 0.10681368D-01 0.49D-16 5 1 0.10D+01 0.00D+00 0.37D-16

--- Final Convergence Analysis at Best Iterate ---

Best result at iteration: ITER = 10

Objective function value: F(X) = 0.10681368D-01

Solution values: X =

0.19191422D+00 0.36223614D+00 0.23065604D+00 0.18877354D+00

0.10681368D-01

Multiplier values: U =
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0.28276724D+00 0.58912518D-01 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.40030440D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.36133107D+00

0.00000000D+00 0.23836453D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00

Constraint values: G(X) =

0.34694470D-17 0.27755576D-16 0.10681368D-01 0.15430705D-01

0.11109890D-01 0.16469661D-01 0.15196771D-01 0.14450944D-01

0.21362736D-01 0.39898640D-16 0.21362736D-01 0.10965605D-01

0.10681368D-01 0.10681368D-01 0.59320313D-02 0.10252847D-01

0.48930750D-02 0.61659648D-02 0.69117920D-02 -0.17347235D-17

0.21362736D-01 -0.15612511D-16 0.10397131D-01 0.10681368D-01

Distance from lower bound: XL-X =

-0.19191422D+00 -0.36223614D+00 -0.23065604D+00 -0.18877354D+00

-0.10000000D+31

Distance from upper bound: XU-X =

0.99999808D+05 0.99999638D+05 0.99999769D+05 0.99999811D+05

0.10000000D+31

Number of function calls: NFUNC = 10

Number of gradient calls: NGRAD = 10

Number of calls of QP solver: NQL = 10

--- Final Convergence Analysis of NLPINF ---

Maximum function value: RES = 0.10681368D-01

Function values: F(X) =

0.34694470D-17 0.47493368D-02 0.42852147D-03 0.57882931D-02

0.45154033D-02 0.37695761D-02 0.10681368D-01 -0.10681368D-01

0.10681368D-01 0.28423718D-03 0.27755576D-16

Solution: X =

0.19191422D+00 0.36223614D+00 0.23065604D+00 0.18877354D+00

Multiplier values: U =

0.28276724D+00 0.58912518D-01 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00

Constraint values: G(X) =

0.34694470D-17 0.27755576D-16

Number of function calls: NFUNC = 10

Number of derivative calls: NGRAD = 10
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