A Combined SQP-IPM Algorithm for Solving

Large-Scale Nonlinear Optimization Problems

Bjorn Sachsenberg, Klaus Schittkowski

Address: Klaus Schittkowski
Department of Computer Science
University of Bayreuth
D - 95440 Bayreuth

E-mail: klaus.schittkowski@uni-bayreuth.de

Web: http://www.klaus-schittkowski.de
Date: January 7, 2015
Abstract

We consider a combined IPM-SQP method to solve smooth nonlinear optimiza-
tion problems, which may possess a large number of variables and a sparse Jacobian
matrix of the constraints. Basically, the algorithm is a sequential quadratic program-
ming (SQP) method, where the quadratic programming subproblem is solved by a
primal-dual interior point method (IPM). A special feature of the algorithm is that
the quadratic programming subproblem does not need to become exactly solved.
To solve large optimization problems, either a limited-memory BFGS update to
approximate the Hessian of the Lagrangian function is applied or the user specifies
the Hessian by himself. Numerical results are presented for the 306 small and dense
Hock-Schittkowski problems, for 13 large semi-linear elliptic control problems after
a suitable discretization, and for 35 examples of the CUTEr test problem collection
with more than 5,000 variables.

Keywords: large-scale nonlinear programming, sequential quadratic programming, SQP,
interior point methods, IPM

1 Introduction

We consider the nonlinear programming problem to minimize an objective function sub-
ject to inequality constraints,

reR": | (1)

where x is an n-dimensional parameter vector. It is assumed that the functions f(z) and
g(z) = (g1(x), ..., gm(x))T are twice continuously differentiable on the R™. To illustrate
the underlying mathematical algorithm, we omit equality constraints and upper and lower
bounds of variables to facilitate the notation.

The basic idea is to mix a sequential quadratic programming (SQP) and an interior
point method (IPM) for nonlinear programming. In an outer loop, a sequence of quadratic
programming subproblems is constructed by approximating the Lagrangian function

Liw,u) = f(x) +u”g(x) (2)

quadratically and by linearizing the constraints. The resulting quadratic programming
subproblem (QP)

min 3d" H (g, up)d + V f (zx)"d

deR": g(xg) + Vg(xp)d <0 (3)
is then solved by an interior point solver. A pair (zj,uy) denotes the current iterate
in the primal-dual space, H (zy,u;) the Hessian of the Lagrangian function of (2), i.e.,
H (xy, ur) = Ve L(xy, uy) or a suitable approximation, and Vg(xy) is the Jacobian matrix
of the vector of constraints. We call z;, € R" the primal and u; € R™ the dual variable
or the multiplier vector, respectively. The index k is an iteration index and stands for the
k-th step of the optimization algorithm, k£ = 0,1,2,.. ..

Sequential quadratic programming methods are well known, and numerous modifica-
tions and extensions have been published on SQP methods. Review papers are given by
Boggs and Tolle [2] and Gould and Toint [12]. Most optimization textbooks have chapters
on SQP methods, see, for example, see Fletcher [9], Gill, Murray and Wright [10], and
Sun and Yuan [25]. A method for solving large scale quadratic programs is introduced in
Cafieri et al. ([1]).

An alternative approach is the interior point method (IPM) developed in the 90’s, see,
e.g., Griva et al. [14], There are numerous alternative algorithms and implementations
available differing especially by their stabilization approaches, by which convergence to-
wards a stationary point can be guaranteed, see, e.g., Byrd, Gilbert, and Nocedal [3],
D’Apuzzo et al. [7], or the review paper of Gondzio [1]. The underlying strategy consists
of replacing the constrained optimization problem (1) by a simpler one without inequality
constraints,

min f(x) — p 37, log(s;)

reR",se R"™: g@)+s=0 .

(4)

Here, s = (s1,...,5,)7 > 0 denotes a vector of m slack variables, where the positivity
has to be guaranteed separately. The smaller the so-called barrier term pu is, the closer
are the solutions of both problems. It is essential to understand that we now have n +m
primal variables x and s, and in addition m dual variables u € R™, the multipliers of the
equality constraints of (4). Since, however, these multiplier approximations are also used
to approximate the multipliers of the inequality constraints of (1), we also require that
u > 0 throughout the algorithm.

By applying Newton’s method to the KKT conditions (4), we construct a sequence of
systems of linear equations, see, for example, Byrd, Gilbert, and Nocedal [3]. Thus, we
solve a so-called primal-dual system of linear equations

Vg(xk) —Bk I dz + g(xk) + Sp — C’kuk =0 . (5)
0 Sk Uk dz Skuk — HUE€

Here, k denotes the actual iteration index and x, si, and uy are the primal and dual
iterates. S; and U, are positive diagonal matrices containing the vectors s, and uy along
the diagonal. By, C) € R™ ™ are positive diagonal regularization matrices and I denotes
the identity matrix. Moreover, we introduce e = (1,...,1)7 € R™. The barrier term gy,
introduced in (4), is internally adapted and depends now on the iteration index k.

A step length oy, > 0 along dy, = (d, d, d}}) is determined to achieve sufficient decrease
of a merit function and to get the next iterate

Lkl T d%
Syl | = | sk | taw| & | (6)
Uk+1 U dz

where 0 < aj < 1 and where sp,; > 0 and ug;q > 0 must be guaranteed by recursive
reduction of aj. The matrix Hy in (5) is either the Hessian matrix of the Lagrangian func-
tion L(xy, ux) or a corresponding quasi-Newton matrix updated in each step. Convergence
is measured by evaluating the norm of

V f(@r) + V(o) uy,
F(xy, sg,up) = g(xr) + s) (7)
Skuk

In Section 2 we give a brief overview of the algorithm, and some numerical results are
summarized in Section 3.

2 The Combined SQP-IPM Algorithm

In our situation, we proceed from an SQP algorithm, where the quadratic programming
subproblem (3) is solved by an interior-point method for a fixed k, i.e., we replace (3) by

d* € R?, min s AT H (e, wi)d® + V f (w) Td® — e X7 log (s¥ + d2)
€ R™ " g(zp) + Vg(ap)d® + sp +d° =0

(8)

where d” is the primal variable, and s; + d® is considered as slack variable to facilitate the
subsequent notation. d* denotes now the implicitly defined dual variable of (8). Moreover,
we use the notation s, = (s¥,...,s*)T and d° = (d5,...,d5)".

The approximate primal and dual solution returned by an IPM solver depends on an
internal iteration index [and is denoted by dj ;, dj ;, and the multiplier approximation dj,,
respectively. They are supposed to converge towards a solution of the quadratic program
(3). Note that we do not change the Hessian matrix H (zy, ux) during the inner iteration.

Thus, the overall algorithm consists of two nested loops identified by two iteration
indices k and [. By xj, sk, and u; we denote the outer iterates of primal, slack, and dual
variables, respectively, £ = 0,1,2,.... z(is a user-provided starting point and uy > 0,
so > 0 are usually set internally by the algorithm. The multiplier and slack variables
must satisfy u; > 0 and s, > 0 in all subsequent steps. Correspondingly, d ;, dj ;, and
dj., are the iterates of the inner cycle with s, +dj, > 0 and d;; > 0,1 =0,1,2,.... To
get an SQP method, the inner loop continues until termination at an optimal solution
subject to a small tolerance. The outer loop requires an additional line search along the
direction obtained by the inner loop, to converge towards a stationary point.

On the other hand, a user may terminate the inner loop at any time, e.g., by setting
a small value for the maximum number of iterations. Thus, it is not required to solve
the quadratic programming problem exactly. A possible reason could arise when solving
very large optimization problems with relatively fast function and gradient evaluations,
to avoid time-consuming linear algebra manipulations of the internal QP solver.

Applying again Newton’s method to the KKT optimality conditions of (8), we get a
primal-dual system of linear equations in each iteration of the inner loop, formulated now
in the primal and the dual space analogously to (5),

Hy, Vg(z)" 0 Ady
Vg(xk) —BkJ I Ad%”l
0 Di, Diy Ady,

Hydf) + V f () + Vg(xk)Td};J
= — g($k) + Vg(a:k) il —+ Si + dz,l — Ck,leJ
Di,ld}i,l — Mg €

Here, k denotes the outer iteration index, [an inner iteration index, and xy, sx, and uy
are the outer iterates. Dy ;, and Dy, are positive diagonal matrices containing the vectors
sk +dj, and dj.; along the diagonal. By, C; € IR™*™ are positive diagonal regularization
matrices. Their choice depends on the used merit function to get a descent direction. For
the lp-merit function (16) and the flexible penalty function (18), for example, we adapt
the regularization of Chen and Golfarb [5] to our SQP-IPM algorithm,

lg(r) + Vglar)di, + si + dill2

Bk,z = Ck,l =
Tk

(10)

rr is a penalty parameter updated in the outer cycle to guarantee descent of a merit
function. The corresponding update formulae depend on the merit function chosen, and
are found in the references.

The barrier term iy, introduced in (9) is internally adapted and depends on the
iteration indices k and [. Convergence is obtained if the norm of the right-hand side of
(9) is below a tolerance g > 0.

After solving (9), we get new iterates

T o T T
w1 = i+ o Ady

s o s s

hiel = digtagAdyy (11)
u o u u

b1 = i+ o Ady

where oy € (0,1] is a step length parameter. To simplify the analysis, we do not distin-
guish between a primal and a dual step length. By applying the fraction to the boundary
rule, we get an ay; such that the inner iterates satisfy

7Ié,lJrl > (]‘ - T) Z,l)

(12)
Z,Hl >(1—1) Z,l

with, e.g., 7 = 0.995.
However, the step length might be still too long and is reduced further to guarantee
the descent of a merit function

éu,r('xa S:uadxadsadu)) (13)

where p is a barrier parameter and r is a penalty parameter which must be carefully
chosen to guarantee a sufficient descent property, i.e., at least

X S u T x S u
q’uk,l,m(xkvSkvukvdk,uladk,lﬂv k:,l—f—l) S‘I’uk,z,rk(fkaskaukadk,la kD k,z) . (14)

The merit function (i)W is closely related to the merit function one has to apply in the
outer cycle. Here, the step length parameter «y is adapted such that a sufficient descent
property subject to a merit function ®,,(x, s, u) is obtained, i.e., that we are able to find
a penalty parameter 1 satisfying (14) and

Do (T + ardy, sy 4 cndy, up + g dyl) < @y (T8, Sk, U) (15)
15
+ v Oékakq)uk,rk(xk7Sk‘7uk‘)

where 0 < o < 1 is a sufficiently small stepsize and v > 0 is a given constant. Note that
the inner product on the right-hand side of the inequality is always negative. Vg, denotes
the the directional derivative along (d, d;, d}).

To give an example, we consider the the [y-merit function

Byr (1 5,0) o= f(2) — > og s+ rllg(a) + sl (16)

=1

with p,r € R, see, e.g., Chen and Golfarb [5], and neglect iteration indices for a moment.
By replacing f(z) by 3d" Hd+V f(z)"d and g(z) by g(z)+Vg(x)d and by using s+d, > 0
as slack variable for (3), we obtain

PByur(w,,u,d7, d*, d*) = V f(@)Td" + 3dT Hd* — p 355 log(s; + d)

(17)
+ 7 lg(x) + Vg(z)d® + s+ d°|2 ,

i.e., its counterpart used for solving the quadratic programming subproblem. Another
possible merit function is the so-called flexible penalty function of Curtis and Nocedal [6],

m x)+ S|l2 —
@, (z,s,u) = f(z) —p) logs; + pl;p2p3+min{ A1) + sl = o) }, (18)
=1

p2(llg(x) + sll2 — ps)
with 7 = (p1, p2, p3), pr < pa, and p3 = |[g(z + s)|l2-

For p1 = po = r, (18) and (16) are equivalent. Similar to (17), the counterpart for
solving the quadratic programming subproblem is derived. Note that both merit functions
do not depend on the multiplier vector v € R™ in contrast to, e.g., the augmented

Lagrangian merit function used by Schittkowski [21, 22], which has also been implemented.
The algorithm is summarized now as follows:

Algorithm 2.1 Choose starting values xy, ug, and sy with ug > 0 and sy > 0, poo > 0,
ro > 0 and some internal constants. For k:=0,1,2,...

1. Ewvaluate function and gradient values at xy, i.e., f(xy), g(xg, Vf(zg), and Vg(zy),
2. Check stopping criteria based on the KKT conditions (7). If satisfied, then return.

3. Compute one or more penalty parameters ry, depending on the merit function under
consideration.

4. Choose starting values dj o, dj o > 0, and dj 5 > 0.
5 Forl:=0,1,2,..., e do
(a) Determine a barrier parameter ju; and suitable scaling matrices By, and Cy,
e.g., by (10).

(b) Solve the primal-dual system of linear equations (9) and determine a step length
parameter oy € (0, 1] which satisfies (12) and (14).

(¢c) Compute new internal iterates df, ;.\, dj .y, and dj ;. by (11).

(d) If the termination criteria for the QP (8) are satisfied, i.e., either the norm
of the right-hand side of (9) is sufficiently small or | = lyaqz, let g == pi,
v =dg 11, di = dj 4, and di == dy; ., and break the for-loop.

6. Find a step length oy such that the sufficient decrease property (15) is satisfied, e.q.,
by successive reduction of oy, = 1. If necessary, compute new function values.

7. Set xp41 = xp + apdy, Sky1 = Sk + apdy, Uks1 1= Uk + apdi and go to step 1.

Here, 4, > 0 is a given maximum number of iterations of the inner cycle. In principal,
lmae = 1 leads to an IPM and a very large l,,4., say 100, to an SQP method. The larger
the number of variables n is, the smaller ,,,, should be chosen. If, on the other hand,
function evaluations are very costly or highly nonlinear, is recommended to use a higher
number of sub-iterations.

The primal and dual stepsize parameters are always greater than zero and less or equal
to one. Note that the feasibility condition (12) and the sufficient descent properties (14)
and (15) are always satisfied for a sufficiently small stepsize due to the specific choice of
the merit function, the barrier and the penalty parameter, and especially the structure
of the primal-dual system (9). This can be achieved, e.g., by successive reduction of
until the corresponding inequalities are satisfied.

The size of the primal-dual system (9) can be reduced by eliminating Adj; to get a
smaller reduced KKT system

Hy, V()" Ady,
V(i) _Di,z(Dz,z)il — By, Ad%,l

Hydj, + V f(xr) + V()" dy,
g(zr) + Vg(zr)di, + pua(DyL) e — Crudy

(19)

for determining Ady; and Ady ;. There are several strategies for updating the barrier
parameter iy, e.g., by the Mehrota predictor-corrector method developed originally for
linear programming, see Nocedal et.al [18] for the nonlinear programming formulas. In
our tests however, we leave the barrier parameter constant in the inner iterations, i.e.
tii+1 = fy for all k0 € IN. In the outer iterations, we set fi41,0 = 0.1p,0 whenever the
error of the KKT conditions is less than 5 o.

The matrix Hj, in (9) or (19), respectively, could be the Hessian matrix of the La-
grangian function (2), if available. However, to satisfy the sufficient descent properties
discussed before and to allow an efficient solution of the system of linear equations (9),
Hy = Vo L(xy, uy) is modified by adding positive values to all entries along the diagonal,
until Hy, is positive definite.

Alternatively, it is possible to replace the Hessian matrix of the Lagrangian function
by a quasi-Newton matrix. Since, however, standard update methods lead to a fill-in, we
apply a limited memory BFGS update, see e.g., Liu and Nocedal [3] or Waltz et.al [27].
The idea is to store only the last p pairs of vectors V,L(xgi1, ur—i) — Vi L(xp_s, ug_;)
and zp 1 ; — 2 for e =0,...,p— 1 with 0 < p < n. These pairs of vectors are used
to implicitly construct the matrix at x;.; and ugy;. Instead of storing O(n?) double
precision numbers for a full update, one has to keep only O(pn) numbers in memory.

To illustrate limited memory BFGS updates in short, we omit the iteration index &
for simplicity. Now, the matrix has the form H = &I + NMNT, where £ > 0 is a scaling
factor, N is a n x 2p matrix, and M is a 2p x 2p matrix. M and N are directly computed
from the p stored pairs of vectors and . To solve the linear system of equations (19)

efficiently for different right-hand sides, we write the inverse of the matrix in (19) in a
more tractable form

oo = ())oe o

Vg(z) —SU™? 0
= Al A'BU+CTATI BT AT (20)
6R2p><2p

by the Sherman-Morrison-Woodbury formula with

A::(ngx) Yg&fﬁ) ,B::(ﬁ) , C:=(MNT 0) .

Instead of solving (19), we only have to solve the system C'z = b several times with
different right hand sides. Matrix I +VTC~!U is only of size 2p x 2p and can be inverted
at negligible costs.

3 Numerical Results

The combined IPM/SQP algorithm outlined in the previous section has been implemented
in form of a Fortran subroutine called NLPIP, see Sachsenberg and Schittkowski [19]. The
flexible merit function (16) is applied together with the regularization matrices (10). We
solve all test problems by the same set of tolerances and parameters, which are internally
stored as default values. The number of recursive LM-Quasi-Newton updates is p = 7
unless defined separately. The KKT-system (5) or any derived system of linear equations
is solved either by LAPACK [1] in case of the small test problems and by PARDISO
otherwise, see e.g., Schenk and Gértner [20]. The Fortran codes are compiled by the Intel
Visual Fortran Compiler, Version 11.0, 64 bit, under Windows 7 and Intel(R) Core(TM)
i7-2720QM CPU, 2.2 GHz, with 8 GB RAM.

3.1 Elliptic Optimal Control Problems with Control and State
Constraints

Maurer and Mittelmann [16, 17] published numerical results to compare some large-scale
optimization codes on a certain class of test problems obtained by discretizing semi-linear
elliptic optimal control problems with control and state constraints. The two-dimensional
elliptic equations are discretized by a scalable rectangular grid of size N = 100 in x- and
y-direction, where the following abbreviations are used in Table 1:

problem n Me Nfunc Ngrad flx*) time

EX 1 10197 9,801 13 13 0.19652520 0.38E-14 0.25E-08 8.1
EX 2 10197 9,801 21 20 0.09669524 0.38E-14 0.88E-08 10.4
EX 3 10197 9,801 12 12 0.32100999 0.33E-14 0.11E-08 7.3
EX 4 10197 9,801 12 12 0.24917886 0.38E-14 0.25E-08 6.7
EX 5 10593 10,197 15 15 0.55224625 0.23E-09 0.11E-08 8.7
EX 6 10593 10,197 21 21 0.01507906 0.29E-09 0.10E-08 11.5
EX 7 10593 10,197 206 80 0.28462160 0.30E-14 0.70E-08 33.9
EX 8 10593 10,197 208 84 0.21964514 0.31E-14 0.10E-08 30.4
EX9 19602 9,801 15 15 0.06216417 0.95E-14 0.11E-08 11.0
EX 10 19602 9,801 16 16 0.05645717 0.23E-13 0.15E-08 16.5
EX 11 19602 9,801 15 15 0.11026724 0.66E-14 0.10E-08 9.0
EX 12 19998 10,197 20 20 0.07806694 0.13E-12 0.13E-08 11.8
EX 13 19998 10,197 24 24 0.05267357 0.75E-13 0.23E-08 22.0

Table 1: Test Results for Semilinear Elliptic Control Problems

problem test problem identifier,

n number of optimization variables ,

Me number of equality constraints,

N fune number of function evaluations,

Ngrad number of gradient evaluations,

f(z¥) objective function value at termination point z*
time total CPU time in seconds

Problems EX1 to EXS8 correspond to examples 5.1 to 5.8 of Maurer and Mittel-
mann [16] and problems EX9 to EX13 to examples 1 to 5 of Maurer and Mittelmann [17].
All optimal objective function values shown in Table 1 coincide to those presented by
the authors of the papers mentioned, besides of some differences caused by different dis-
cretization accuracy.

One function evaluation consists of the computation of one objective function value and
all constraint function values. Derivatives are available in analytical form and termination
accuracy is set to 1078, The number of internal iterations is set to l,,.; = 1. We observe
rapid convergence within a quite low number of iterations which is not effected by doubling
the number of variables for EX9 to EX13.

3.2 Small and Dense HS-Problems

Moreover, we evaluate the performance of NLPIP on the set of 306 small-scale, but highly
nonlinear test problems of Hock and Schittkowski [15, 23], and compare the results to the
SQP solver NLPQLP, a dense implementation of an SQP-method, see Schittkowski [21,
22, 24]. The latter reference contains a detailed description of the test environment.
Two-sided differences are used for approximating derivatives and termination accuracy
is set to 107°. In Table 2 we present some results for p = 7 and p = 70. N4y is the number

code Nguce MNfunc Tgrad —time
NLPIP (p =7) 301 81 28 1.4
NLPIP (p =70) 303 22 17 2.3
NLPQLP 305 24 17 0.6

Table 2: Average Test Results for 306 Hock-Schittkowski Problems

of successful solutions satisfying KKT conditions subject to a predetermined tolerance
of 107%, and approaching the known optimal solution subject to a relative error of one
percent. 1 gy, is the number of function evaluations, and ng,44 is the number of derivative
evaluations, in both cases of objective function and all constraint functions simultaneously.
Since many of the test problems are highly nonlinear, the number of internal iterations is
set t0 lae = 100. In other words, we apply an SQP method in this case.

Called with a larger number of BFGS-updates, NLPIP needs about the same number
of iterations and function evaluations compared to NLPQLP. Since the quadratic pro-
gramming problem is iteratively solved, average computation times are higher than those
of NLPQLP, especially due to a large number of limited-memory updates.

3.3 CUTEr Collection

A large number of test problems for nonlinear programming has been collected and pro-
grammed by Gould, Orban, and Toint [13]. The library is widely used for develop-
ing and testing optimization programs, and consists of small- and large-scale problems.
Derivatives are available in analytical form. For our purposes, we select 35 test problems
with 5,000 or more variables. The problems are identified by their internal name. They
only possess equality constraints with five exceptions, CAR2 (m = 4,996), CORKSCRW
(m = 35,000), COSHFUN (m = 2,000), OPTMASS (m = 50,005), and SVANBERG
(m = 50, 000).

Numerical results are listed in Table 3 for termination accuracy 107% and I, = 1.
In two cases, the maximum number of iterations (500), is reached. ¢~ (z*) shows the
constraint violation on termination. During two other test runs, the code stops because
of more than 20 feasible iterates without reducing the objective function value. Only one
iteration is allowed for the solving the quadratic subproblems; i.e., we apply an interior
point method.

References

[1] Anderson E., Bai Z., Bischof C., Blackford S., Demmel J., Dongarra J., J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen (1999): LAPACK Users’
Guide, Society for Industrial and Applied Mathematics, Philadelphia, PA

10

problem n Me N func Ngrad f(it*) g (:E*) time
GILBERT 5,000 1 65 32 0.2459468E+04 0.72E-07 2.4
BRAINPCO 6,907 6,900 159 57 0.3670417E400 0.31E-09 12.4
BRAINPC1 6,907 6,900 267 73 0.4175864E-03 0.11E-07 34.0
BRAINPC2 13,807 13,800 128 50 0.4421012E4-00 0.10E-07 33.6
BRAINPC3 6,907 6,900 452 155 0.3637082E+00 0.84E-10 36.4
BRAINPC4 6,907 6,900 309 82 0.4068723E4-00 0.18E-08 17.9
BRAINPC5 6,907 6,900 209 61 0.3847010E+00 0.15E-09 13.0
BRAINPC6 6,907 6,900 214 79 0.3750098E+-00 0.11E-09 19.2
BRAINPC7 6,907 6,900 210 70 0.3965791E4-00 0.70E-10 14.7
BRAINPCS 6,907 6,900 549 170 0.7875434E-03 0.17E-07 37.5
BRAINPC9 6,907 6,900 287 94 0.3533461E4-00 0.17E-07 20.2
CAR2 5,999 3,996 293 156 0.2666083E+01 0.76E-12 27.6
CLNLBEAM 60,003 40,000 27 14 0.3500000E+03 0.25E-19 12.6
CORKSCRW 45,006 30,000 277 263 0.9809597E+-02 0.14E-12 132.7
COSHFUN 6,001 0 1,943 500 -0.7732327E4-00 0.00E+00 36.5
DRUGDIS 6,004 4,000 148 121 0.4277756E+01 0.44E-10 14.7
DTOCINA 5,998 3,996 14 14 0.4138867E+01 0.25E-11 0.9
DTOCINB 5,998 3,996 15 14 0.7138849E+01 0.58E-08 0.9
DTOCINC 5,998 3,996 15 14 0.3519934E+02 0.53E-10 0.9
DTOCIND 5,998 3,996 15 15 0.4760303E+-02 0.15E-08 1.0
DTOC2 5,998 3,996 238 118 0.5086610E+00 0.72E-07 10.9
DTOC5 9,999 4,999 28 14 0.1535111E+01 0.72E-10 1.2
DTOC6 10,001 5,000 63 49 0.1348480E+06 0.87E-07 5.3
JUNKTURN 10,010 7,000 1,279 500 0.1719764E-02 0.11E-04 87.4
OPTMASS 60,010 40,004 51 22 -0.1853756E-02 0.15E-15 19.3
ORTHRDM2 8,003 4,000 29 15 0.3110153E+03 0.10E-08 2.2
ORTHRDS2 5,003 2,500 46 32 0.7624654E4-03 0.83E-07 2.7
ORTHREGA 8,197 4,096 234 108 0.2264784E4-05 0.16E-09 23.6
ORTHREGC 5,005 2,500 185 78 0.9481285E+-02 0.19E-08 8.1
ORTHREGD 5,003 2,500 29 16 0.7620643E4-03 0.33E-10 1.2
ORTHREGE 7,506 5,000 150 65 0.1087286E+-04 0.79E-09 13.5
ORTHRGDM 10,003 5,000 31 18 0.1513802E+-04 0.34E-09 3.8
ORTHRGDS 5,003 2,500 55 33 0.7620643E4-03 0.23E-08 2.7
READINGS5 5,001 5,000 46 28 0.0000000E+00 0.00E+00 1.6
SVANBERG 50,000 0 188 188 0.8362382E4-05 0.90E-08 256.0

Table 3: Test Results for CUTEr-Problems

11

[2] Boggs P.T., Tolle JW. (1995): Sequential quadratic programming, Acta Numerica,
Vol. 4,1 - 51

[3] Byrd R.H., Gilbert J.C., Nocedal J. (2000): A trust region method based on interior
point techniques for nonlinear programming, Mathematical Programming, Vol. 89, 149
185

[4] S. Cafieri, D’Apuzzo M., De Simone V., di Serafino D. (2007): On the iterative solu-
tion of KKT systems in potential reduction software for large scale quadratic problems,
Computational Optimization and Applications, Vol 38, 27-45

[5] Chen L., Goldfarb D. (2009): An interior-point piecewise linear penalty method for
nonlinear programming, Mathematuical Programming, Vol. 10, 1-50

[6] Curtis F.E., Nocedal J. (2008): Flexible penalty functions for nonlinear constrained
optimization, Journal of Numerical Analysis, Vol. 28, 335-351

[7] D’Apuzzo M., De Simone V., di Serafino D. (2010): On mutual impact of numer-
tcal linear algebra and large-scale optimization with focus on interior point methods,
Computational Optimization and Applications, Vol. 45, No. 2, 283-310

[8] Liu D.C., Nocedal J. (1989): On the limited memory BFGS method for large-scale
optimization, Mathematical Programming, Vol. 45, 503-528

9] Fletcher R. (1987): Practical Methods of Optimization, John Wiley, Chichester

[10] Gill P.E., Murray W., Wright M. (1982): Practical Optimization, Academic Press,
London

[11] Gondzio J. (2012): Interior point methods 25 years later, European Journal of Op-
erations Research, Vol. 218, 587-601

[12] Gould N.I.M, Toint Ph.L. (1999): SQP methods for large-scale nonlinear program-
ming,, Proceedings of the 19th IFIP TC7 Conference on System Modelling and Opti-
mization: Methods, Theory and Applications, pp. 149-178.

[13] Gould N.LM., Orban D., Toint Ph.L. (2005): General CUTEr documentation, CER-
FACS Technical Report TR/PA/02/13, 2005

[14] Griva I., Shanno D.F., Vanderbei R.J., Benson H.Y. (2008): Global convergence of a
primal-dual interior-point method for nonlinear programmaing, Algorithmic Operations
Research, Vol. 3, 12-19

[15] Hock W., Schittkowski K. (1983): A comparative performance evaluation of 27 non-
linear programming codes, Computing, Vol. 30, 335-358

12

[16] Maurer H., Mittelmann H.D.(2000): Optimization techniques for solving elliptic con-
trol problems with control and state constraints, Part 1: Boundary control, Computa-
tional Optimization and Applications, Vol. 16, 29-55

[17] Maurer H., Mittelmann H.D. (2001): Optimization techniques for solving elliptic
control problems with control and state constraints, Part 2: Distributed control, Com-
putational Optimization and Applications, Vol. 18, 141-160

[18] Nocedal J., Wachter A., Waltz R.A. (2009): Adaptive barrier strategies for nonlinear
interior methods, SIAM Journal on Optimization, Vol. 19, 1674-1693

[19] Sachsenberg B., Schittkowski K. (2014): NLPIP: A Fortran implementation of an
SQP interior point method for solving large-scale nonlinear optimization problems -
User’s guide, Report, Department of Computer Science, University of Bayreuth

[20] Schenk O., Géartner K. (2006): On fast factorizing pivoting methods for symmetric
indefinite systems, Electronic Transactions on Numerical Analysis, Vol. 23, 158-179

[21] Schittkowski K. (1983): On the convergence of a sequential quadratic programming
method with an augmented Lagrangian search direction, Optimization, Vol. 14, 197-216

[22] Schittkowski K. (1985/86): NLPQL: A Fortran subroutine solving constrained non-
linear programming problems, Annals of Operations Research, Vol. 5, 485-500

23] Schittkowski K. (1987): More Test Ezamples for Nonlinear Programming, Lecture
Notes in Economics and Mathematical Systems, Vol. 182, Springer

[24] Schittkowski K. (2009): NLPQLP: A Fortran implementation of a sequential
quadratic programming algorithm with distributed and non-monotone line Search -
User’s guide, Version 3.0, Report, Department of Computer Science, University of
Bayreuth (2009)

[25] Sun W.Y., Yuan Y. (2006) Optimization Theory and Methods: Nonlinear Program-
mang, Springer, New York

[26] Vanderbei R.J. (1999): LOQO: An interior point code for quadratic programming,
Optimization Methods and Software, Vol. 11, 451-484

[27] Waltz R.A., Morales J.L., Nocedal J., Orban D. (2006): An interior algorithm for
nonlinear optimization that combines line search and trust region steps, Mathematical
Programming, Vol. 107, 391-408

13

	Introduction
	The Combined SQP-IPM Algorithm
	Numerical Results
	Elliptic Optimal Control Problems with Control and State Constraints
	Small and Dense HS-Problems
	CUTEr Collection

