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Abstract

The Fortran subroutine NLPJOB solves smooth nonlinear multiobjective
or multicriteria problems, respectively, by a transformation into a scalar non-
linear program. Provided are 15 different possibilities to perform the transfor-
mation, depending on the preferences of the user. The subproblem is solved
by the sequential quadratic programming code NLPQLP. The usage of the
code is outlined and an illustrative example is presented.
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1 Introduction

A multicriteria problem consists of a vector-valued objective function to be mini-
mized, and of some equality or inequality constraints, i.e.,

min (f1(x), . . . , fl(x))
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gj(x) = 0 , j = 1, . . . , me , (1)

x ∈ IRn : gj(x) ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu

with continuously differentiable functions f1(x), . . ., fl(x) and g1(x), . . ., gm(x).
The above formulation, however, must be interpreted in an alternative way.

Instead of one objective function, we have l objectives which we want to reduce
subject to the constraints. Since some of the objective functions may conflict with
others, one has to find an appropriate compromise depending on priorities of the
user. The ideal situation is to compute a vector x� with

(f1(x
�), . . . , fl(x

�)) = (f �
1 , . . . , f �

l )

where each f �
i , i = 1, . . . , l, is the individual minimum value of the corresponding

scalar problem

min fi(x)

gj(x) = 0 , j = 1, . . . , me , (2)

x ∈ IRn : gj(x) ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu

for i = 1, . . ., l. But one has to expect that when reducing one objective function,
another one will increase, so that the ideal objective function vector

(f �
1 , . . . , f �

l )

will be approximated at most.
Thus, we define the term optimality in a different way. A point x� is said to be

Pareto-optimal for the multicriteria problem, if there is no other vector x ∈ IRn with

fi(x) ≤ fi(x
�)

for all i = 1, . . ., l and
fi(x) < fi(x

�)

for at least one i, i = 1, . . ., l. Alternative notations are functional efficient or
efficient point. The set of all Pareto-optimal points defines a certain boundary, which
is convex in case of convex individual functions. Section 4 contains an example for
which this set is easily approximated, see Figure 1.

The numerical computation of all efficient points of a multicriteria or vector
optimization problem is extremely expensive with respect to calculation time and
depends also on certain assumptions, e.g., convexity, which are often not satisfied in
practice. On the other hand, there are many different alternative ways to compute at
least one efficient point by defining a certain substitute scalar problem which is then
solved by any standard nonlinear programming method. The choice of the individual
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approach and the corresponding weights depends on the special application problem
to be solved, and the priorities of the user.

Since, however, any decision could be very vague at least in the beginning, it
is highly useful to have an interactive algorithm which allows to modify the scalar
transformation or the weights during the design process. Efficient points evaluated
during an interactive session, must be saved and retrieved whenever desirable. An
interactive optimization system EASY-OPT is available to run NLPJOB interac-
tively from a GUI under MS-Windows, see Schittkowski [7].

A deeper treatment of multicriteria optimization and some numerical experi-
ments are found in Osyczka [3], more applications from engineering design in Es-
chenauer, Koski, and Osyczka [1].

2 The Transformation into a Scalar Nonlinear Pro-

gram

The Fortran code NLPJOB introduced in this paper, offers 15 different possibilities
to transform the objective function vector into a scalar function. Depending on the
selected method, additional constraints must be added. The following options are
available:

(0) Individual minimum:
Minimizing an individual objective function subject to constraints, i.e.,

f(x) := fi(x)

for i = 1, . . ., l. The minimum objective function values are needed for some
of the other transformation models, see below.

(1) Weighted sum:
The scalar objective function is the weighted sum of individual objectives, i.e.,

f(x) := w1f1(x) + . . . + wlfl(x) ,

where w1, . . ., wl are non-negative weights given by the user. When we use
positive weights and a convex problem, the resulting optimal solutions of the
substitute problem are efficient points.

(2) Hierarchical optimization method:
The idea is to formulate a sequence of l scalar optimization problems with
respect to the individual objective functions subject to bounds on previously
computed optimal values, i.e., we minimize

f(x) := fi(x) , i = 1, . . . , l
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subject to the original and the additional constraints

fj(x) <= (1 + εj/100)f �
j , j = 1, . . . , i − 1 ,

where εj is the given coefficient of the relative function increment as defined
by the user and where f �

j is the individual minimum, see (3). It is assumed
that the objective functions are ordered with respect to their importance.

(3) Trade-off method:
One objective is selected by the user and the other ones are considered as
constraints with respect to individual minima, i.e.,

f(x) := fi(x)

is minimized subject to the original and some additional constraints of the
form

fj(x) <= εj , j = 1, . . . , l , j <> i,

where εj is a bound value of the j-th objective function as provided by the
user.

(4) Method of distance functions in L1-norm:
A sum of absolute values of the differences of objective functions from prede-
termined goals y1, . . ., yl is minimized, i.e.,

f(x) := |f1(x) − y1| + ... + |fl(x) − yl| .

The goals y1, . . ., yl are given by the user and their choice requires some
knowledge about the ideal solution vector.

(5) Method of distance functions in the L2-norm:
A sum of squared values of the differences of objective functions from prede-
termined goals y1, . . ., yl is minimized,

f(x) := (f1(x) − y1)
2 + . . . + (fl(x) − yl)

2 .

Again the goals y1, . . ., yl are provided by the user.

(6) Global criterion method:
The scalar function to be minimized, is the sum of relative distances of indi-
vidual objectives from their known minimal values, i.e.,

f(x) := (f1(x) − f �
1 )/|f �

1 | + . . . + (fl(x) − f �
l )/|f �

l | ,

where f �
i is the i-th optimal function value obtained by minimizing fi(x) sub-

ject to original constraints.
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(7) Global criterion method in the L2-norm:
The scalar function to be minimized, is the sum of squared distances of indi-
vidual objectives from their known optimal values, i.e.,

f(x) := ((f1(x) − f �
1 )/f �

1 )2 + . . . + ((fl(x) − f �
l )/f �

l ))2 ,

where f �
i is the i-th optimal function value.

(8) Min-max method no. 1:
The maximum of absolute values of all objectives is minimized, i.e.,

f(x) := max { |fi(x)| , i = 1, . . . , l } .

(9) Min-max method no. 2:
The maximum of all objectives is minimized, i.e.,

f(x) := max { fi(x) , i = 1, . . . , l } .

(10) Min-max method no. 3:
The maximum of absolute distances of objective function values from given
goals y1, . . ., yl is minimized, i.e.,

f(x) := max { |fi(x) − yi| , i = 1, . . . , l } .

The goals y1, . . ., yl must be determined by the user.

(11) Min-max method no. 4:
The maximum of relative distances of objective function values from ideal
values is minimized, i.e.,

f(x) := max { (fi(x) − f �
i )/|f �

i | , i = 1, . . . , l } .

(12) Min-max method no. 5:
The maximum of weighted relative distances of objective function values from
individual minimal values is minimized, i.e.,

f(x) := max { wi(fi(x) − f �
i )/|f �

i | , i = 1, . . . , l } .

Weights must be provided by the user.

(13) Min-max method no. 6:
The maximum of weighted objective function values is minimized, i.e.,

f(x) := max { wifi(x) , i = 1, . . . , l } .

Weights must be provided by the user.
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(14) Weighted global criterion method:
The scalar function to be minimized, is the weighted sum of relative distances
of individual objectives from their goals, i.e.,

f(x) := w1(f1(x) − y1)/y1 + . . . + wl(fl(x) − yl)/yl .

The weights w1, . . . , wl and goals y1, . . ., yl must be set by the user.

(15) Weighted global criterion method in the L2-norm:
The scalar function to be minimized, is the weighted sum of squared relative
distances of individual objectives from their goals, i.e.,

f(x) := w1((f1(x) − y1)/y1)
2 + . . . + wl((fl(x) − yl)/yl)

2 .

The weights w1, . . ., wl and goals y1, . . ., yl must be set by the user.

In some cases we have to know the ideal values f �
1 , . . ., f �

l , which must be
computed initially. NLPJOB provides an option to compute the individual minima
(3).

Depending on the desired transformation, some of the the scalar subproblems
possess a structure which cannot be passed immediately to a nonlinear programming
solver, either because of inefficiency as in case of minimizing sums of squares, the
L2-norm, or because the transformed problems are not differentiable due to an L1

or L∞ norm.
Least squares problems are given in the form

min
∑l

i=1 f̃i(x̃)2

g̃j(x̃) = 0 , j = 1, . . . , m̃e ,

x̃ ∈ IRñ : g̃j(x̃) ≥ 0 , j = m̃e + 1, . . . , m̃ ,

x̃l ≤ x̃ ≤ x̃u .

(3)

The number of variables and constraints and also their structure depends on the
specific transformation model chosen, in this case model (5), (7), or (15). To avoid
instabilities, l additional variables z1, . . ., zl are introduced, moreover l additional
nonlinear equality constraints,

min
∑l

i=1 z2

f̃i(x̃) − zi = 0 , i = 1, . . . , l

x̃ ∈ IRñ, g̃j(x̃) = 0 , j = 1, . . . , m̃e ,

z ∈ IRl : g̃j(x̃) ≥ 0 , j = m̃e + 1, . . . , m̃ ,

x̃l ≤ x̃ ≤ x̃u .

(4)

It is shown by the author [6, 11], that typical features of a Gauss-Newton-type
method are retained. The numerical efficiency has been proven by a large variety of
test runs, see [9].
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Transformation (4) leads to an L1-norm optimization problem, i.e., we have to
minimize the sum of l absolute function value

min
∑l

i=1 |f̃i(x̃)|
g̃j(x̃) = 0 , j = 1, . . . , m̃e ,

x̃ ∈ IRñ : g̃j(x̃) ≥ 0 , j = m̃e + 1, . . . , m̃ ,

x̃l ≤ x̃ ≤ x̃u .

(5)

Again, the number of variables and constraints and also their structure depends
on the transformation. Note that the objective function is non-differentiable, an
essential assumption for applying efficient gradient-based optimization codes. To
get an equivalent smooth avoid instabilities, l additional variables z1, . . ., zl are
introduced, moreover 2l additional nonlinear inequality constraints,

min
∑l

i=1 zi

−f̃i(x̃) + zi ≥ 0 , i = 1, . . . , l

f̃i(x̃) + zi ≥ 0 , i = 1, . . . , l

x̃ ∈ IRñ, g̃j(x̃) = 0 , j = 1, . . . , m̃e ,

z ∈ IRl : g̃j(x̃) ≥ 0 , j = m̃e + 1, . . . , m̃ ,

x̃l ≤ x̃ ≤ x̃u ,

0 ≤ z ,

(6)

see [14] or also [9].
Models of the type (8) and (10) lead to transformed problems with a maximum-

or L∞-norm objective function

min max {|f̃i(x̃)| : i = 1, . . . , l}
g̃j(x̃) = 0 , j = 1, . . . , m̃e ,

x̃ ∈ IRñ : g̃j(x̃) ≥ 0 , j = m̃e + 1, . . . , m̃ ,

x̃l ≤ x̃ ≤ x̃u .

(7)

In this case, we introduce only one additional variable, but 2l inequality constraints
to get the differentiable problem

min z

−f̃i(x̃) + z ≥ 0 , i = 1, . . . , l

f̃i(x̃) + z ≥ 0 , i = 1, . . . , l

x̃ ∈ IRñ, g̃j(x̃) = 0 , j = 1, . . . , m̃e ,

z ∈ IR : g̃j(x̃) ≥ 0 , j = m̃e + 1, . . . , m̃ ,

x̃l ≤ x̃ ≤ x̃u ,

0 ≤ z ,

(8)
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see [14] or [9], respectively.
Finally, the min-max optimization models (11), (12), and (13)

min max {f̃i(x̃) : i = 1, . . . , l}
g̃j(x̃) = 0 , j = 1, . . . , m̃e ,

x̃ ∈ IRñ : g̃j(x̃) ≥ 0 , j = m̃e + 1, . . . , m̃ ,

x̃l ≤ x̃ ≤ x̃u .

(9)

lead to a smooth with l additional inequality constraints

min z

−f̃i(x̃) + z ≥ 0 , i = 1, . . . , l

x̃ ∈ IRñ, g̃j(x̃) = 0 , j = 1, . . . , m̃e ,

z ∈ IR : g̃j(x̃) ≥ 0 , j = m̃e + 1, . . . , m̃ ,

x̃l ≤ x̃ ≤ x̃u ,

(10)

see [13].

3 Program Documentation

NLPJOB is implemented in form of a Fortran subroutine. The scalar nonlinear
programs are solved by the SQP code NLPQLP, see Schittkowski [4, 5, 12]. If
analytical derivatives are not available, simultaneous function calls can be used for
gradient approximations, for example by forward differences, two-sided differences,
or even higher order formulae. In some situations, the new scalar objective function
consists of the maximum of smooth functions, of the maximum of absolute values
of smooth functions, or of a sum of absolute values of smooth functions. In these
cases, additional variables and constraints are introduced to get smooth nonlinear
programs. The transformation is standard and not discussed in detail.

Usage:

CALL NLPJOB ( L, M, ME, LMMAX, N,
/ LNMAX, LMNN2, MODEL, IMIN, X,
/ F, G, DF, DG, U,
/ XL, XU, W, FK, FW,
/ ACC, ACCQP, MAXFUN MAXIT, IPRINT,
/ IOUT, IFAIL, WA, LWA, KWA,
/ LKWA, LOGWA, LLOGWA )
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Definition of the parameters:

L : Number of objective functions, i.e., l.

M : Number of constraints, i.e., m.

ME : Number of equality constraints, i.e., me.

LMMAX : Dimension of G and row dimension of array DG containing
Jacobian of constraints. LMMAX must be greater or equal
to M+L+L to remain valid for all transformations.

N : Number of optimization variables, i.e., n.

LNMAX : Dimension of X, DF, XL, and XU. LNMAX must be at
least two and greater than N+L to remain valid for all
transformations.

LMNN2 : Dimension of U, must be at least 4*L+2*N+M+2 when
calling NLPJOB.

MODEL : Desired scalar transformation.
IMIN : If necessary (MODEL=0,2,3), IMIN defines the index of

the objective function to be take into account for the de-
sired scalar transformation.

X(LNMAX) : Initially, X has to contain N suitable starting values for
solving the scalar subproblem. On return, X is replaced by
the last iterate. In the driving program, the row dimension
of X has to be equal to LNMAX at least.

F : On return, F contains the final objective function value of
the scalar program.

G(LMMAX) : When calling NLPJOB, G has to contain constraint func-
tion values at the first M positions and objective function
values at the subsequent L positions evaluated at the ac-
tual variable values stored in X. In the driving program,
the dimension of G should be equal to LMMAX.

DF(LNMAX) : DF contains the current gradient of the scalar objective
function. Dimension should be LNMAX at least

DG(MMAX, : When calling NLPJOB, DG has to contain the actual gra-
dients of constraints and objective functions evaluated at
the variable values stored in X. The first M rows contain
the partial derivatives subject to M constraints, the subse-
quent L rows the partial derivatives subject to the L ob-
jective functions. In the deriving program, the dimension
of DG has to be equal to LMMAX at least.
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U(LMNN2) : U contains the multipliers with respect to the actual iterate
stored in X. The first M locations contain the multipliers of
the nonlinear constraints, the subsequent N locations the
multipliers of the lower bounds, and the final N locations
the multipliers of the upper bounds subject to the scalar
subproblem chosen. At an optimal solution, all multipliers
with respect to inequality constraints should be nonnega-
tive.

XL(LNMAX), : On input, the one-dimensional arrays XL and XU must

XU(LNMAX) contain N upper and lower bounds of the variables.

W(L) : Weight vector of dimension L, to be filled with suitable
values when calling NLPJOB depending on the transfor-
mation model:
MODEL=1,10,12,13,14,15 - weights

MODEL=2 - bounds
MODEL=3 - bounds for objective functions

MODEL=4,5 - goal values

FK(L) : For MODEL=2,6,7,11,12, FK has to contain the optimal
values of the individual scalar subproblems or reference val-
ues, respectively, when calling NLPJOB. These values must
be different from zero. For MODEL=14,15, FK must pass
the goal values.

FW(L) : Returns the objective function values subject to the final
iterate.

ACC : The user has to specify the desired final accuracy (e.g.
1.0D-7). The termination accuracy should not be much
smaller than the accuracy by which gradients are com-
puted.

ACCQP : The tolerance is needed for the QP solver to perform sev-
eral tests, for example whether optimality conditions are
satisfied or whether a number is considered as zero or not.
If ACCQP is less or equal to zero, then the machine preci-
sion is computed by NLPQLP and subsequently multiplied
by 10.0.

MAXFUN : The integer variable defines an upper bound for the number
of function calls during the line search (e.g. 20).
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MAXIT : Maximum number of iterations, where one iteration cor-
responds to one formulation and solution of the quadratic
programming subproblem, or, alternatively, one evaluation
of gradients (e.g. 100).

IPRINT : Specification of the desired output level:

0 - No output

1 - Final results for the multicriteria problem

2 - Additional results for scalar subproblem

3 - One line of intermediate results
4 - More detailed information per iteration

5 - In addition, merit function and steplength values

IOUT : Integer indicating the desired output unit number, i.e., all
write-statements start with ’WRITE(IOUT,... ’.

IFAIL : The parameter shows the reason for terminating a solu-
tion process. On return, IFAIL could contain the following
values:
0 - The optimality conditions satisfied

1 - More than MAXIT iterations
2 - Uphill search direction

3 - Underflow in BFGS update

4 - Error during line search

5 - Length of a working array short

6 - False dimensions
7 - Search direction close to zero, but infeasible iterate

8 - Violation of bounds at starting point

9 - Wrong input parameter, e.g., for MODEL, IPRINT, or
IOUT
10 - Internal inconsistency in QL

11 - Zero values in FK
>100 - Error in QL, degenerate constraints

WA(LWA) : Real working array of length LWA.

LWA : Length of real working array WA, at least 5*LN-
MAX*LNMAX/2 + 34*LNMAX + 9*LMMAX + 150.

KWA(LKWA) : Integer working array of length LKWA. On return,
KWA(1) and KWA(2) contain the number of function and
derivative evaluations, respectively. One derivative evalu-
ation corresponds to one iteration.
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LKWA : Length of integer working array KWA, at least LN-
MAX+25.

LOGWA(LLOGWA) : Logical working array of length LLOGWA.

LLOGWA : Length of logical working array LOGWA, at least LM-
MAX+10.

Some of the termination reasons depend on the accuracy used for approximat-
ing gradients. If we assume that all functions and gradients are computed within
machine precision and that the implementation is correct, there remain only the
following possibilities that could cause an error message:

1. The termination parameter ACC is too small, so that the numerical algorithm
plays around with round-off errors without being able to improve the solution.
Especially the Hessian approximation of the Lagrangian function becomes un-
stable in this case. A straightforward remedy is to restart the optimization
cycle again with a larger stopping tolerance.

2. The constraints are contradicting, i.e., the set of feasible solutions is empty.
There is no way to find out, whether a general nonlinear and non-convex set
possesses a feasible point or not. Thus, the nonlinear programming algorithms
will proceed until running in any of the mentioned error situations. In this
case, there the correctness of the model must be checked very carefully.

3. Constraints are feasible, but some of them there are degenerate, for example
if some of the constraints are redundant. One should know that SQP algo-
rithms require satisfaction of the so-called constraint qualification, i.e., that
gradients of active constraints are linearly independent at each iterate and in
a neighborhood of the optimal solution. In this situation, it is recommended
to check the formulation of the model.

However, some of the error situations do also occur, if because of wrong or non-
accurate gradients, the quadratic programming subproblem does not yield a descent
direction for the underlying merit function. In this case, one should try to improve
the accuracy of function evaluations, scale the model functions in a proper way, or
start the algorithm from other initial values.

The user has to provide functions and gradients in the same program, which
executes also NLPJOB, according to the following rules:

1. Choose starting values for the variables to be optimized, and store them at
the first N positions of X.

2. Compute all constraint and all objective function values and store them at the
first M positions of G and the subsequent L positions of G, respectively.
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3. Compute gradients of all constraints and all objective function and store them
in DG, respectively. The first M rows of DG contain the constraint gradients,
the subsequent L rows gradients of the L objective functions.

4. Set IFAIL=0 and execute NLPJOB.

5. If NLPJOB returns with IFAIL=-1, compute constraint and objective function
values subject to the first N variables of X, store them in G (first M positions for
constraints, subsequent L positions for objective functions), and call NLPJOB
again.

6. If NLPJOB terminates with IFAIL=-2, compute gradient values subject to
variables stored at the first N positions of X, and store then in DG (first M
rows for constraint gradients, subsequent L positions for objective function
gradients). Then call NLPJOB again.

7. If NLPJOB terminates with IFAIL=0, the internal stopping criteria are satis-
fied. In case of IFAIL¿0, an error occurred.

To link and run NLPJOB, the code has to be linked to the main program of the
user and the object codes of

NLPJOB - multicriteria optimization,
NLPQLP - SQP code for solving the scalar subproblems,
QL - quadratic programming code for subproblems generated by

NLPQLP.

4 Example

To give an example how to organize the code, we consider a very simple problem,

x1, x2 ∈ IR :

min ( (x1 + 3)2 + 1 , x2 )

x2
1 + x2

2 ≤ 9

x1 + x2 ≤ 1

−10 ≤ x1 ≤ 10

−10 ≤ x2 ≤ 10

(11)

The transformation method 12 is selected, i.e., the weighted relative distances of
objective function values from the individual minima f �

1 = 1 and f �
2 = −3 is to be

minimized.
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When using the weights one, NLPJOB generates the scalar problem

x1, x2 ∈ IR :

min max { (x1 + 3)2 , (x2 + 3)/3 }
x2

1 + x2
2 ≤ 9

x1 + x2 ≤ 1

−10 ≤ x1 ≤ 10

−10 ≤ x2 ≤ 10

(12)

The maximum formulation requires the introduction of one additional variable and
two additional inequality constraints, to further transform this problem into a smooth
one,

x1, x2, x3 ∈ IR :

min x3

x2
1 + x2

2 ≤ 9

x1 + x2 ≤ 1

(x1 + 3)2 ≤ x3

(x2 + 3)/3 ≤ x3

−10 ≤ x1 ≤ 10

−10 ≤ x2 ≤ 10

(13)

This nonlinear program is now in a form to be solved by the SQP code NLPQLP.
The execution of NLPJOB is to be illustrated for the simple example under con-

sideration. The dimensioning parameters, i.e., number of variables and constraints
of the transformed scalar problem, must be correctly set by the user. The Fortran
source code for executing NLPJOB is listed below. Gradients are approximated by
forward differences. The gradient evaluation is easily exchanged by an analytical
one or higher order derivatives.

IMPLICIT NONE
INTEGER NMAX, MMAX, LMAX
PARAMETER (NMAX = 2, MMAX = 3, LMAX = 3)
INTEGER LNMAX, LMMAX, LMNN2, LWA, LKWA, LLOGWA
PARAMETER (LNMAX = NMAX + LMAX + 1,

/ LMMAX = MMAX + LMAX + LMAX,
/ LMNN2 = LMMAX + LNMAX + LNMAX + 2,
/ LWA = 5*LNMAX*LNMAX/2 + 34*LNMAX + 9*LMMAX + 150,
/ LKWA = LNMAX + 25,
/ LLOGWA = 2*LMMAX + 10)
DOUBLE PRECISION ACC, ACCQP, F,

/ X(LNMAX), G(LMMAX), DF(LNMAX), DG(LMMAX,LNMAX),
/ U(LMNN2), XL(LNMAX), XU(LNMAX), W(LMAX), FK(LMAX),
/ FW(LMAX), WA(LWA)
INTEGER IOUT, MAXIT, MAXFUN, IPRINT, N, ME, MI, L, M, MODEL,
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/ IFAIL, IMIN, KWA(LKWA)
LOGICAL LOGWA(LLOGWA)

C
C Set some parameters
C

IOUT = 6
ACC = 1.0D-10
ACCQP = 1.0D-10
MAXIT = 100
MAXFUN = 10
IPRINT = 3
N = 2
ME = 0
MI = 2
L = 2
M = ME + MI
MODEL = 12
IMIN = 2
IOUT = 6

C
C Set starting values, bounds, weights, and individual minima
C

X(1) = 1.0D0
XL(1) = -10.0D0
XU(1) = 10.0D0
W(1) = 1.0D1
FK(1) = 1.0D0
X(2) = 1.0D0
XL(2) = -10.0D0
XU(2) = 10.0D0
W(2) = 1.0D1
FK(2) = -3.0D0

C
C Start multicriteria optimization algorithm
C

IFAIL = 0
100 CONTINUE

IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-1)) THEN
G(1) = 9.0D0 - X(1)**2 - X(2)**2
G(2) = 1.0D0 - X(1) - X(2)
G(3) = (X(1) + 3.0D0)**2 + 1.0D0
G(4) = X(2)

ENDIF
IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-2)) THEN

DG(1,1) = -2.0D0*X(1)
DG(1,2) = -2.0D0*X(2)
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DG(2,1) = -1.0D0
DG(2,2) = -1.0D0
DG(3,1) = 2.0D0*(X(1) + 3.0D0)
DG(3,2) = 0.0D0
DG(4,1) = 0.0D0
DG(4,2) = 1.0D0

ENDIF
CALL NLPJOB(L,M,ME,LMMAX,N,LNMAX,LMNN2,MODEL,IMIN,

/ X,F,G,DF,DG,U,XL,XU,W,FK,FW,ACC,ACCQP,
/ MAXFUN,MAXIT,IPRINT,IOUT,IFAIL,WA,LWA,
/ KWA,LKWA,LOGWA,LLOGWA)
IF (IFAIL.LT.0) GOTO 100

C
C End of main program
C

STOP
END

Only 8 function calls and 8 iterations are required to get a solution within ter-
mination accuracy 10−9. The following output should appear on screen:

--------------------------------------------------------------------
START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

--------------------------------------------------------------------

Parameters:
N = 3
M = 4
ME = 0
MODE = 0
ACC = 0.1000D-09
ACCQP = 0.1000D-09
STPMIN = 0.1000D-09
MAXFUN = 10
MAX_NM = 10
MAXIT = 100
IPRINT = 2

Output in the following order:
IT - iteration number
F - objective function value
SCV - sum of constraint violations
NA - number of active constraints
I - number of line search iterations
ALPHA - steplength parameter
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DELTA - additional variable to prevent inconsistency
KKT - Karush-Kuhn-Tucker optimality criterion

IT F SCV NA I ALPHA DELTA KKT
--------------------------------------------------------------------

1 0.00000000D+00 0.17D+03 4 0 0.00D+00 0.00D+00 0.20D+02
2 0.20639243D+00 0.41D+02 3 1 0.10D+01 0.00D+00 0.63D+01
3 0.16486450D+01 0.10D+02 3 1 0.10D+01 0.00D+00 0.48D+01
4 0.33281665D+01 0.17D+01 3 1 0.10D+01 0.00D+00 0.11D+01
5 0.38665769D+01 0.61D-01 3 1 0.10D+01 0.00D+00 0.56D-01
6 0.38944766D+01 0.71D-04 3 1 0.10D+01 0.00D+00 0.95D-04
7 0.38945243D+01 0.36D-09 3 1 0.10D+01 0.00D+00 0.37D-09
8 0.38945243D+01 0.00D+00 3 1 0.10D+01 0.00D+00 0.69D-15

--- Final Convergence Analysis at Best Iterate ---

Best result at iteration: ITER = 8
Objective function value: F(X) = 0.38945243D+01
Solution values: X =

-0.23759388D+01 -0.18316427D+01 0.38945243D+01
Multiplier values: U =

0.67580916D+00 0.00000000D+00 0.25729545D+00 0.74270455D+00
0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00
0.00000000D+00 0.00000000D+00

Constraint values: G(X) =
0.00000000D+00 0.52075815D+01 0.13322676D-14 0.00000000D+00

Distance from lower bound: XL-X =
-0.76240612D+01 -0.81683573D+01 -0.10000000D+31

Distance from upper bound: XU-X =
0.12375939D+02 0.11831643D+02 0.10000000D+31

Number of function calls: NFUNC = 8
Number of gradient calls: NGRAD = 8
Number of calls of QP solver: NQL = 8

--- Summary of Multicriteria Solution ---

Model: MODEL = 12
Index: IMIN = 0
Termination reason: IFAIL = 0
Number of function calls: NFUNC = 8
Number of gradient calls: NGRAD = 8

Variable values: X =
-0.23759388D+01 -0.18316427D+01
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Objective function values: F(X) =
0.13894524D+01 -0.18316427D+01

Constraint values: G(X) =
0.00000000D+00 0.52075815D+01

When applying all 15 scalar transformations to the multicriteria problem (11), we
get the results of the subsequent table. model denotes the transformation method, nit

the number of iterations, and f(x�
1, x

�
2) the optimal value of the scalar subproblem.

model nit f(x�
1, x

�
2) x�

1 x�
2 f1(x

�
1, x

�
2) f2(x

�
1, x

�
2)

1 9 0.82D+00 -0.26D+01 -0.15D+01 0.12D+01 -0.15D+01
2 9 -0.13D+01 -0.27D+01 -0.13D+01 0.11D+01 -0.13D+01
3 6 0.10D+01 -0.28D+01 -0.10D+01 0.10D+01 -0.10D+01
4 6 0.00D+00 -0.20D+01 -0.10D+01 0.20D+01 -0.10D+01
5 3 0.46D+02 0.50D+00 0.50D+00 0.13D+02 0.50D+00
6 11 0.65D+00 -0.27D+01 -0.14D+01 0.11D+01 -0.14D+01
7 39 0.51D+00 -0.25D+01 -0.89D+00 0.12D+01 -0.89D+00
8 20 0.10D+01 -0.30D+01 -0.44D-02 0.10D+01 -0.44D-02
9 19 0.10D+01 -0.30D+01 -0.60D-02 0.10D+01 -0.60D-02
10 6 0.00D+00 -0.20D+01 -0.20D+01 0.20D+01 -0.20D+01
11 10 0.39D+00 -0.24D+01 -0.18D+01 0.14D+01 -0.18D+01
12 10 0.46D+00 -0.25D+01 -0.16D+01 0.12D+01 -0.16D+01
13 21 0.20D+01 -0.30D+01 0.55D-02 0.10D+01 0.55D-02
14 10 -0.59D+00 -0.26D+01 -0.15D+01 0.12D+01 -0.15D+01
15 14 0.14D+01 -0.26D+01 0.88D+00 0.12D+01 0.88D+00

By changing the weights in case of the first transformation method, an approxi-
mation of the Pareto-optimal boundary can be found, as shown in Figure 1.

5 Summary

A new version of a multicriteria optimization code is presented which transforms
the given problem into a scalar nonlinear program. After some reformulations, the
smooth, constrained subproblem is solved by the SQP code NLPQLP. The transfor-
mations are outlined, the usage of the Fortran subroutine NLPJOB is documented,
and a few demonstrative numerical results are presented.
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