
NLPMMX: A Fortran Implementation of an

SQP Algorithm for Min-Max Optimization

- User’s Guide -

Address: Prof. K. Schittkowski
Siedlerstr. 3
D - 95488 Eckersdorf
Germany

Phone: (+49) 921 32887

E-mail: klaus@schittkowski.de

Web: http://www.klaus-schittkowski.de

Date: December, 2009

Abstract

The Fortran subroutine NLPMMX solves constrained min-max nonlinear
programming problems, where the maximum of absolute nonlinear function
values is to be minimized. It is assumed that all functions are continuously
differentiable. By introducing one additional variable and nonlinear inequal-
ity constraints, the problem is transformed into a general smooth nonlinear
program subsequently solved by the sequential quadratic programming (SQP)
code NLPQLP. The usage of the code is documented, and an illustrative ex-
ample is presented.

Keywords: min-max optimization, SQP, sequential quadratic programming, nonlin-
ear programming, numerical algorithms, Fortran codes

1

1 Introduction

Min-max optimization problems consist of minimizing the maximum of finitely many
given functions,

x ∈ IRn :

min max{fi(x), i = 1, . . . , l}
gj(x) = 0 , j = 1, . . . , me ,

gj(x) ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu .

(1)

It is assumed that f1, . . ., fl and g1, . . ., gm are continuously differentiable functions.
In this paper, we consider the question how an existing nonlinear programming

code can be used to solve constrained min-max problems in an efficient and robust
way after a suitable transformation. In a very similar way, also L∞, L1, and least
squares problems can be solved efficiently by an SQP code, see Schittkowski [3, 5,
7, 8, 9].

The transformation of a min-max problem into a special nonlinear program is
described in Section 2. Sections 3 to 5 contain a documentation of the Fortran sub-
routine, some information about the organization, and an example implementation.

2 The Transformed Optimization Problem

We consider the constrained nonlinear min-max problem (1), and introduce one
additional variable, z, and l additional nonlinear inequality constraints of the form

z − fi(x) ≥ 0 , (2)

i = 1, . . ., l. The following equivalent problem is to be solved by an SQP method,

(x, z) ∈ IRn+1 :

min z

gj(x) = 0 , j = 1, . . . , me ,

gj(x) ≥ 0 , j = me + 1, . . . , m ,

z − fi(x) ≥ 0 , i = 1, . . . , l ,

xl ≤ x ≤ xn .

(3)

2

In this case, the quadratic programming subproblem wich has to be solved in each
step of an SQP method, has the form

(d, e) ∈ IRn+1 :

min 1
2
(dT , e)Bk

(
d
e

)
+ e

∇gj(xk)
T d + gj(xk) = 0 , j = 1, . . . , me ,

∇gj(xk)
T d + gj(xk) ≥ 0 , j = me + 1, . . . , m ,

e −∇fi(xk)
T d + zk − fi(xk) ≥ 0 , i = 1, . . . , l ,

xl − xk ≤ d ≤ xu − xk .

(4)

Bk ∈ IRn+1 × IRn+1 is a quasi-Newton update matrix of the Lagrangian function of
(3). A new iterate is then obtained from

xk+1 = xk + αkdk , zk+1 = zk + αkek ,

where dk ∈ IRn and ek ∈ IR are a solution of (4) and αk a steplength parame-
ter obtained from forcing a sufficient descent of a merit function. The proposed
transformation (3) is independent of the SQP method used, so that available codes
can be used in the form of a black box. For the maximum-norm, two-sided bound
constraints can be added, see [9].

3 Calling Sequence

In this section, we describe the arguments of subroutine NLPMMX in detail.

Usage:

CALL NLPMMX (M, ME, LMMAX, L, N,
/ NMAX, LMNN2, X, FUNC, RES,
/ GRAD, U, XL, XU, ACC,
/ ACCQP, RESSIZ, MAXFUN MAXIT, MAXNM,
/ RHOB, IPRINT, IOUT, IFAIL, WA,
/ LWA, KWA, LKWA, LOGWA, LLOGWA)

Definition of the parameters:

3

M : Number of constraints, i.e., m.

ME : Number of equality constraints, i.e., me.

LMMAX : Row dimension of GRAD and dimension of FUNC. LM-
MAX must be at least one and not smaller than L + M.

L : Number of terms in objective function, i.e., l.

N : Number of variables, i.e., n.

NMAX : Dimensioning parameter, at least two and greater than N
+ 1.

LMNN2 : Dimensioning parameter, to be set to M + 2*N + 2*L +
4.

X(NMAX) : On input, the first N positions of X have to contain an
initial guess for the solution. On return, X is replaced by
the last computed iterate.

FUNC(LMMAX) : Function values passed to NLPMMX by reverse commu-
nication, i.e., the first L positions contain the L residual
values fi(x), i = 1, . . ., l, the subsequent M coefficients
the constraint values gj(x), j = 1, . . . ,m.

RES : On return, RES contains the minimal value of (1), i.e.,
max{fi(x), i = 1, . . . , l} .

GRAD(LMMAX, The array is used to pass gradients of residuals and con-
straints

NMAX) : to NLPMMX by reverse communication. In the driving
program, the row dimension of GRAD must be equal to
LMMAX. The first L rows contain L gradients of residual
functions ∇fi(x) at x, i = 1, . . ., l, the subsequent M rows
gradients of constraint functions ∇gj(x), j = 1, . . . , m.

U(LMNN2) : On return, U contains the multipliers with respect to the
last computed iterate. The first M locations contain the
multipliers of the M nonlinear constraints, the subsequent
N locations the multipliers of the lower bounds, and the
following N locations the multipliers of the upper bounds.
At an optimal solution, all multipliers with respect to in-
equality constraints should be nonnegative.

XL(NMAX), On input, the one-dimensional arrays XL and XU must

XU(NMAX) : contain the upper and lower bounds xl and xu of the vari-
ables.

4

ACC : The user has to specify the desired final accuracy (e.g.
1.0D-7). The termination accuracy should not be much
smaller than the accuracy by which gradients are com-
puted.

ACCQP : The tolerance is passed to the QP solver to perform several
tests, for example whether optimality conditions are satis-
fied or whether a number is considered as zero or not. If
ACCQP is less or equal to zero, then the machine precision
is computed by NLPQLP and subsequently multiplied by
10.0.

RESSIZE : The user must indicate a guess for the approximate size of
the objective function.

MAXFUN : The integer variable defines an upper bound for the number
of function calls during the line search (e.g. 20).

MAXIT : Maximum number of iterations, where an iteration corre-
sponds to one evaluation of gradients (e.g. 100).

MAXNM : Stack size for storing merit function values at previous it-
erations for non-monotone line search (e.g. 10).

RHOB : Parameter for initializing a restart in case of IFAIL=2 by
setting the BFGS-update matrix to rhob*I, where I denotes
the identity matrix. The number of restarts is bounded by
MAXFUN. No restart is performed if RHOB is set to zero.
Must be non-negative (e.g. 100).

IPRINT : Specification of the desired output level:

0 - No output of the program.

1 - Only final convergence analysis.

2 - One line of intermediate results for each iteration.
3 - More detailed information for each iteration.
4 - More line search data displayed.

IOUT : Integer indicating the desired output unit number.

IFAIL : Initially IFAIL must be set to zero. On return IFAIL could
contain the following values:

-2 - Compute new gradient values.

-1 - Compute new function values.

0 - Optimality conditions satisfied.

5

1 - Stop after MAXIT iterations.

2 - Uphill search direction.

3 - Underflow when computing new BFGS-update matrix.

4 - Line search exceeded MAXFUN iterations.
5 - Length of a working array too short.

6 - False dimensions, M>MMAX, N≥NMAX, or

MNN2 �=M+N+N+2.

7 - Search direction close to zero at infeasible iterate.
8 - Starting point violates lower or upper bound.

9 - Wrong input parameter, e.g., MODE, IPRINT, IOUT.

10 - Inconsistency in QP, division by zero.

>100 - Error message of QP solver.

WA(LWA) : WA is a real working array of length LWA.

LWA : Length of the real working array WA. LWA must be at
least 5*NMAX*NMAX/2 + ML*NMAX + 35*NMAX +
10*ML + 200, where ML = M + L.

KWA(LKWA) : KWA is an integer working array of length LKWA.

LKWA : Length of the integer working array KWA. LKWA must
be at least N + 25. On return, KWA(1) and KWA(2)
contain the number of function and derivative evaluations,
respectively.

LOGWA(LLOGWA) : Logical working array of length LLOGWA.

LLOGWA : Length of the logical array LOGWA. The length LLOGWA
of the logical array must be at least 2*LM + 10.

4 Program Organization

All declarations of real numbers must be done in double precision. Subroutine
NLPMMX must be linked with the user-provided main program, the SQP code
NLPQLP [6], and the quadratic programming code QL [4].

NLPMMX is implemented in form of a Fortran subroutine. Model functions and
gradients are passed by reverse communication. The user has to provide functions
and gradients in the same program which executes NLPMMX, according to the
following rules:

1. Choose starting values for the variables to be optimized, and store them in
the first N positions of X.

2. Compute residual and constraint function values values, and store them in a
one-dimensional double precision array FUNC. The first L positions contain

6

the L function values fi(x), i = 1, . . ., l, the subsequent M coefficients the
constraint values gj(x), j = 1, . . ., m.

3. Compute gradients of residual and constraint functions, and store them in
a two-dimensional double precision array GRAD. The first L rows contain
gradients of residual functions ∇fi(x) at x, i = 1, . . ., l, the subsequent M
rows gradients of constraint functions ∇gj(x), j = 1, . . ., m.

4. Set IFAIL=0 and execute NLPMMX.

5. If NLPMMX returns with IFAIL=-1, compute residual function values and
constraint values for the arguments found in X, and store them in FUNC in
the order shown above. Then call NLPMMX again, but do not change IFAIL.

6. If NLPMMX terminates with IFAIL=-2, compute gradient values subject to
variables stored in X, and store them in GRAD as indicated above. Then call
NLPMMX again without changing IFAIL.

7. If NLPMMX terminates with IFAIL=0, the internal stopping criteria are sat-
isfied. The variable values found in X are considered as a local solution of the
min-max optimization problem.

8. In case of IFAIL>0, an error occurred.

If analytical derivatives are not available, additional function calls are required
for gradient approximations, for example by forward differences, two-sided differ-
ences, or even higher order formulae.

Some of the termination reasons depend on the accuracy used for approximat-
ing gradients. If we assume that all functions and gradients are computed within
machine precision and that the implementation is correct, there remain only the
following possibilities that could cause an error message:

1. The termination parameter ACC is too small, so that the numerical algorithm
plays around with round-off errors without being able to improve the solution.
Especially the Hessian approximation of the Lagrangian function becomes un-
stable in this case. A straightforward remedy is to restart the optimization
cycle again with a larger stopping tolerance.

2. The constraints are contradicting, i.e., the set of feasible solutions is empty.
There is no way to find out, whether a general nonlinear and non-convex set
possesses a feasible point or not. Thus, the nonlinear programming algorithms
will proceed until running in any of the mentioned error situations. In this
case, there the correctness of the model must be checked very carefully.

7

3. Constraints are feasible, but some of them there are degenerate, for example
if some of the constraints are redundant. One should know that SQP algo-
rithms require satisfaction of the so-called constraint qualification, i.e., that
gradients of active constraints are linearly independent at each iterate and in
a neighborhood of the optimal solution. In this situation, it is recommended
to check the formulation of the model.

However, some of the error situations do also occur, if because of wrong or non-
accurate gradients, the quadratic programming subproblem does not yield a descent
direction for the underlying merit function. In this case, one should try to improve
the accuracy of function evaluations, scale the model functions in a proper way, or
start the algorithm from other initial values.

5 Example

To give a simple example how to organize the code in case of three explicitly given
objective functions and one constraint, we consider the problem

x1, x2 ∈ IR :
min max{x2

1 + x2
2 + x1x2 − 1 , sin(x1) , −cos(x2)}

x1 + x2 >= 4.7
(5)

The Fortran source code for executing NLPMMX is listed below. Gradients are
computed analytically.

IMPLICIT NONE
INTEGER NMAX, MMAX, LMAX, LMMAX, MNN2MX, LWA, LKWA,

/ LLOGWA
PARAMETER (NMAX = 4, MMAX = 1, LMAX = 3)
PARAMETER (LMMAX = LMAX + MMAX,

/ MNN2MX = LMAX + MMAX + 2*NMAX,
/ LWA = 5*NMAX*NMAX/2 + (MMAX+LMAX)*NMAX
/ + 35*NMAX + 10*(MMAX + LMAX) + 200,
/ LKWA = NMAX + 25,
/ LLOGWA = 2*(LMAX + MMAX) + 10)
INTEGER N, M, ME, L, LMNN2, ML, MAXFUN, MAXIT, IPRINT,

/ MAXNM, IOUT, IFAIL, KWA(LKWA)
DOUBLE PRECISION RES, ACC, ACCQP, RESSIZ, RHOB, EPS,

/ X(NMAX), FUNC(LMMAX), GRAD(LMMAX,NMAX),
/ U(MNN2MX), XL(NMAX), XU(NMAX), WA(LWA)
LOGICAL LOGWA(LLOGWA)

C
C set parameters
C

N = 2

8

L = 3
M = 1
ME = 0
ML = M + L
LMNN2 = L + M + N + N + 4
ACC = 1.0D-13
ACCQP = ACC
RESSIZ = 0.0D0
RHOB = 0.0D0
MAXFUN = 20
MAXIT = 100
MAXNM = 0
IPRINT = 2
IOUT = 6
IFAIL = 0

C
C starting values and bounds
C

X(1) = 1.0D0
XL(1) = -1.0D5
XU(1) = 1.0D5
X(2) = 2.0D0
XL(2) = -1.0D5
XU(2) = 1.0D5

C
C execute NLPMMX by reverse communication
C

1 CONTINUE
IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-1)) THEN

FUNC(1) = X(1)**2 + X(2)**2 + X(1)*X(2) - 1.0D0
FUNC(2) = DSIN(X(1))
FUNC(3) = -DCOS(X(2))
FUNC(4) = X(1) + X(2) - 4.7D0

ENDIF
IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-2)) THEN

GRAD(1,1) = 2.0D0*X(1) + X(2)
GRAD(1,2) = 2.0D0*X(2) + X(1)
GRAD(2,1) = DCOS(X(1))
GRAD(2,2) = 0.0D0
GRAD(3,1) = 0.0D0
GRAD(3,2) = DSIN(X(2))
GRAD(4,1) = 1.0D0
GRAD(4,2) = 1.0D0

ENDIF
C
C call NLPMMX

9

C
CALL NLPMMX(M, ME, L+M, L, N, N+2, LMNN2, X, FUNC, RES,

/ GRAD, U, XL, XU, ACC, ACCQP, RESSIZ, MAXFUN, MAXIT,
/ MAXNM, RHOB, IPRINT, IOUT, IFAIL, WA, LWA, KWA,
/ LKWA, LOGWA, LLOGWA)
IF (IFAIL.LT.0) GOTO 1

C
STOP
END

The following output should appear on screen:

--
START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM
--

Parameters:
N = 3
M = 4
ME = 0
MODE = 0
ACC = 0.1000D-12
ACCQP = 0.1000D-12
STPMIN = 0.1000D-12
MAXFUN = 20
MAXNM = 0
MAXIT = 100
IPRINT = 2

Output in the following order:
IT - iteration number
F - objective function value
SCV - sum of constraint violations
NA - number of active constraints
I - number of line search iterations
ALPHA - steplength parameter
DELTA - additional variable to prevent inconsistency
KKT - Karush-Kuhn-Tucker optimality criterion

IT F SCV NA I ALPHA DELTA KKT
--

1 0.00000000D+00 0.90D+01 4 0 0.00D+00 0.00D+00 0.14D+03
2 0.87666667D+00 0.73D+01 3 2 0.10D+00 0.00D+00 0.93D+02
3 0.13809677D+02 0.18D+01 2 1 0.10D+01 0.00D+00 0.36D+01
4 0.15584337D+02 0.30D-02 2 1 0.10D+01 0.00D+00 0.40D-02
5 0.15583316D+02 0.20D-03 2 1 0.10D+01 0.00D+00 0.16D-01

10

6 0.15567366D+02 0.41D-02 2 1 0.10D+01 0.00D+00 0.78D-02
7 0.15563593D+02 0.39D-02 2 1 0.10D+01 0.00D+00 0.78D-02
8 0.15567500D+02 0.58D-07 2 1 0.10D+01 0.00D+00 0.12D-06
9 0.15567500D+02 0.32D-13 2 1 0.10D+01 0.00D+00 0.62D-13

--- Final Convergence Analysis at Last Iterate ---

Objective function value: F(X) = 0.15567500D+02
Solution values: X =

0.23500000D+01 0.23500000D+01 0.15567500D+02
Multiplier values: U =

0.70500000D+01 0.10000000D+01 0.00000000D+00 0.00000000D+00
0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00
0.00000000D+00 0.00000000D+00

Constraint values: G(X) =
0.00000000D+00 -0.31974423D-13 0.14856027D+02 0.14864787D+02

Distance from lower bound: XL-X =
-0.10000235D+06 -0.10000235D+06 -0.10000000D+31

Distance from upper bound: XU-X =
0.99997650D+05 0.99997650D+05 0.10000000D+31

Number of function calls: NFUNC = 10
Number of gradient calls: NGRAD = 9
Number of calls of QP solver: NQL = 9

--- Final Convergence Analysis of NLPMMX ---

Maximum function value: RES = 0.15567500D+02
Function values: F(X) =

0.15567500D+02 0.71147333D+00 0.70271305D+00
Solution: X =

0.23500000D+01 0.23500000D+01
Multiplier values: U =

0.70500000D+01 0.00000000D+00 0.00000000D+00 0.00000000D+00
0.00000000D+00

Constraint values: G(X) =
0.00000000D+00

Number of function calls: NFUNC = 10
Number of derivative calls: NGRAD = 9

References

[1] Schittkowski K. (1983): On the convergence of a sequential quadratic program-
ming method with an augmented Lagrangian search direction, Optimization,
Vol. 14, 197-216

11

[2] Schittkowski K. (1985/86): NLPQL: A Fortran subroutine solving constrained
nonlinear programming problems, Annals of Operations Research, Vol. 5, 485-
500

[3] Schittkowski K. (2002): Numerical Data Fitting in Dynamical Systems,
Kluwer Academic Publishers, Dordrecht

[4] Schittkowski K. (2003): QL: A Fortran code for convex quadratic programming
- User’s guide, Report, Department of Mathematics, University of Bayreuth

[5] Schittkowski K. (2005): DFNLP: A Fortran Implementation of an SQP-
Gauss-Newton Algorithm - User’s Guide, Version 2.0, Report, Department
of Computer Science, University of Bayreuth

[6] Schittkowski K. (2006): NLPQLP: A Fortran implementation of a sequen-
tial quadratic programming algorithm with distributed and non-monotone line
search - user’s guide, version 2.2, Report, Department of Computer Science,
University of Bayreuth

[7] Schittkowski K. (2007): NLPLSQ: A Fortran implementation of an SQP-
Gauss-Newton algorithm for least-squares optimization - user’s guide, Report,
Department of Computer Science, University of Bayreuth

[8] Schittkowski K. (2008): NLPL1: A Fortran implementation of an SQP algo-
rithm for minimizing sums of absolute function values - user’s guide, Report,
Department of Computer Science, University of Bayreuth

[9] Schittkowski K. (2008): NLPINF: A Fortran implementation of an SQP algo-
rithm for maximum-norm optimization problems - user’s guide, Report, De-
partment of Computer Science, University of Bayreuth

12

	Introduction
	The Transformed Optimization Problem
	Calling Sequence
	Program Organization
	Example

