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Abstract

The Fortran subroutine NLPQLF solves smooth nonlinear programming prob-
lems and is an extension of the code NLPQLP. It is assumed that objective function
or constraints can be evaluated only at argument values within a convex set de-
scribed by some other feasibility constraints. The numerical method is a two-stage
process. Starting from a feasible point, a new search direction is computed by solv-
ing a quadratic program expanded by the nonlinear feasibility constraints. Thus,
the new iterate is feasible subject to these constraints and objective function as well
as the remaining constraint function values can be evaluated. The usage of the code
is documented and illustrated by an example. Also some numerical test results are
presented.
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1 Introduction

We consider the optimization problem to minimize an objective function f under nonlinear
equality and inequality constraints,

x ∈ IRn :

min f(x)

gj(x) = 0 , j = 1, . . . ,me ,

gj(x) ≥ 0 , j = me + 1, . . . ,mf ,

ei(x) ≥ 0 , i = 1, . . . ,m ,

xl ≤ x ≤ xu ,

(1)

where x is an n-dimensional parameter vector. It is assumed that so-called feasibility
functions ei(x), i = 1, . . ., m, are concave and continuously differentiable on the whole
IRn. Moreover, we suppose that the remaining scalar functions f(x) and gj(x), j = 1,
. . ., mf are continuously differentiable and that they can be evaluated only on the convex
subset

F := {x ∈ IRn : ei(x) ≥ 0, i = 1, . . . ,m} . (2)

We implicitly assume that the computation of feasibility constraints ei(x), i = 1, . . ., m,
is much less expensive than an evaluation of then objective function f(x) or the remaining
constraints gj(x), j = 1, . . ., mf .

A typical situation which motivates the implementation of NLPQLF, is nonlinear
semi-definite programming in topology optimization, where the variables are semi-definite
matrices and where objective function and constraints cannot be evaluated if any of these
matrices is indefinite. This new branch of topology optimization is called free material
optimization (FMO), where the coefficients of elementary material matrices are optimiza-
tion variables. All these matrices of dimension 3 or 6, respectively, must be positive
definite in order to get a positive definite global stiffness matrix, for which structural
responses like displacement, stress, or dynamical constraints can be computed. For more
details, see Lehmann et al. [7], where a feasible sequential convex programming algorithm
is introduced.

Feasible direction methods compute a feasible direction d(k) which ensures the existence
of a descent step inside the feasible domain. To improve the performance and to get a
higher convergence order, a quadratic programming subproblem similar to SQP methods
is formulated. The resulting search direction may not be feasible, since active constraints
can lead to a search direction tangential to the feasible region, see, e.g., Panier and
Tits [8]. Thus, a correction is determined by tilting the original direction towards the
feasible region. To ensure fast convergence near a solution an additional search direction
is computed by bending. An extended line search is performed along the search arc
consisting of all three directions, such that feasibility and a sufficient descent in the
objective function is guaranteed.
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Moreover, feasible direction interior point algorithms (FDIP) are developed, see, e.g.,
Herskovitz [4]. Interior point methods (IPM) compute in each iteration a Newton descent
direction by solving a linear system of equations. The resulting search direction might not
be a feasible direction. Thus, a second linear system is formulated where the right hand
side is perturbed ensuring a feasible direction. Some of the FDIP methods solve a third
linear system to ensure superlinear convergence near a stationary point. Analogously, to
feasible direction SQP methods, a line search along the search arc is performed to ensure
both feasibility and a descent in the objective function.

Basically, NLPQLF is a sequential quadratic programming method which is frequently
used to solve smooth nonlinear optimization problems, and we proceed from the version
developed by Schittkowski [11, 12, 13, 14]. The resulting Fortran code is called NLPQLP,
see [17].

To guarantee feasibility of constraints e1(x), . . ., em(x), we assume that the starting
point x0 ∈ IRn is feasible subject to these constraints. SQP methods formulate quadratic
programming subproblems by a quadratic approximation of the Lagrangian and by lin-
earizing constraints. Whereas constraints g1(x), . . ., gmf

(x) remain as linear functions in
the QP, the linearized feasibility constraints are replaced by the original nonlinear con-
straints ei(x) ≥ 0 , i = 1, . . . ,m. Thus, we obtain a nonlinear subproblem to be solved
in each step of the modified SQP algorithm, where the objective function is a quadratic
one and where the constraints consist of a mixture of linear and nonlinear ones. This
subproblem is then solved by an SQP algorithm, in our case by the code NLPQLP, see
Schittkowski [17]. A particular advantage is that a subsequent line search will not violate
feasibility because of the convexity of the convex set F , see (2).

In Section 2 we outline the general mathematical structure of an SQP algorithm and
the modifications to guarantee feasibility. Section 4 contains some numerical test results,
and the usage of the Fortran subroutine is documented in Section 4.

2 A New Feasible Sequential Quadratic Programming

Method

Sequential quadratic programming or SQP methods belong to the most powerful nonlinear
programming algorithms we know today for solving differentiable nonlinear programming
problems of the form (1). The theoretical background is described, e.g., in Stoer [20] in
form of a review, or in Spellucci [19] in form of an extensive text book. Their excellent
numerical performance is tested and compared with other methods in Schittkowski [10],
and since many years they belong to the most frequently used algorithms to solve practical
optimization problems.

To facilitate the notation of this section, we assume that upper and lower bounds xu
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and xl are not handled separately, i.e., we consider the somewhat simpler formulation

x ∈ IRn :

min f(x)

gj(x) = 0 , j = 1, . . . ,me ,

gj(x) ≥ 0 , j = me + 1, . . . ,mf ,

ei(x) ≥ 0 , i = 1, . . . ,m .

(3)

The basic idea is to formulate and solve a quadratic programming subproblem in
each iteration which is obtained by linearizing the constraints and approximating the
Lagrangian function

L(x, u) := f(x)−
mf∑
j=1

ugjgj(x)−
m∑
i=1

ueiei(x) (4)

quadratically, where x ∈ IRn is the primal variable and ug = (ug1, . . . , u
g
mf

)T ∈ IRmf and

ue = (ue1, . . . , u
e
m)

T ∈ IRm the two multiplier vectors, which we stack to get

u :=

(
ug

ue

)
∈ IRmf+m .

To formulate the quadratic programming subproblem, we proceed from given iterates
xk ∈ IRn, an approximation of the solution, vk ∈ IRmf+m, an approximation of the
multipliers, and Bk ∈ IRn×n, an approximation of the Hessian of the Lagrangian function.
We consider now the extended subproblem

y ∈ IRn :

min 1
2
(y − xk)

TBk(y − xk) +∇f(xk)T (y − xk)

∇gj(xk)T (y − xk) + gj(xk) = 0 , j = 1, . . . ,me ,

∇gj(xk)T (y − xk) + gj(xk) ≥ 0 , j = me + 1, . . . ,mf ,

ei(y) ≥ 0 , i = 1, . . . ,m .

(5)

Let yk be the optimal solution and uk the corresponding multiplier of this subproblem. A
new iterate is obtained by(

xk+1

vk+1

)
:=

(
xk
vk

)
+ αk

(
yk − xk
uk − vk

)
(6)

where αk ∈ (0, 1] is a suitable steplength parameter.
Although we are able to guarantee that the matrix Bk is positive definite, it is possible

that (5) is not solvable due to inconsistent constraints. One possible remedy is to introduce
an additional variable δ ∈ IR, leading to a modified quadratic programming problem, see
Schittkowski [15] for details.
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The steplength parameter αk is required in (6) to enforce global convergence of the SQP
method, i.e., the approximation of a point satisfying the necessary Karush-Kuhn-Tucker
optimality conditions when starting from arbitrary initial values, typically a user-provided
x0 ∈ IRn and v0 = 0, B0 = I. αk should satisfy at least a sufficient decrease condition of
a merit function ϕr(α) given by

ϕr(α) := ψr

((
xk
vk

)
+ α

(
yk − xk
uk − vk

))
(7)

with a suitable penalty function ψr(x, v), e.g., an augmented Lagrangian function as used
in [13]. The objective function is penalized as soon as an iterate leaves the feasible domain.
The corresponding penalty parameters rj, j = 1, . . ., mf +m which control the degree of
constraint violation, must carefully be chosen to guarantee a sufficient descent direction
of the merit function, see Schittkowski [13]. Also in our special situation, it is possible to
show that

ϕ′
rk
(0) = ▽ψrk(xk, vk)

T

(
yk − xk
uk − vk

)
< 0 , (8)

a fundamental property of all line search based optimization methods.
Finally one has to approximate the Hessian matrix of the Lagrangian function in a

suitable way. To avoid calculation of second derivatives and to obtain a final superlinear
convergence rate, the standard approach is to update Bk by the BFGS quasi-Newton
formula, cf. Powell [9] or Stoer [20].

3 Performance Evaluation

3.1 The Test Environment

Our numerical tests use the 306 academic and real-life test problems published in Hock
and Schittkowski [5] and in Schittkowski [16]. Part of them are also available in the Cute
library, see Bongartz et. al [2], and their usage is described in Schittkowski [18].

Since analytical derivatives are not available for all problems, we approximate them
numerically by forward differences. The test examples are provided with exact solutions,
either known from analytical precalculations by hand or from the best numerical data
found so far.

First we need a criterion to decide whether the result of a test run is considered as a
successful return or not. Let ϵ > 0 be a tolerance for defining the relative accuracy, xk
the final iterate of a test run, and x⋆ the supposed exact solution known from the test
problem collection. Then we call the output a successful return, if the relative error in
the objective function is less than ϵ and if the maximum constraint violation is less than
ϵ2, i.e., if

f(xk)− f(x⋆) < ϵ|f(x⋆)| , if f(x⋆) ̸= 0
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or
f(xk) < ϵ , if f(x⋆) = 0

and
r(xk) = ∥g(xk)−∥∞ < ϵ2 ,

where ∥ . . . ∥∞ denotes the maximum norm and gj(xk)
− = min(0, gj(xk)), j > me, and

gj(xk)
− = gj(xk) otherwise.

We take into account that a code returns a solution with a better function value than
the known one, subject to the error tolerance of the allowed constraint violation. However,
there is still the possibility that an algorithm terminates at a local solution different from
the known one. Thus, we call a test run a successful one, if in addition to the above
decision the internal termination conditions are satisfied subject to a reasonably small
tolerance (IFAIL=0), and if

f(xk)− f(x⋆) ≥ ϵ|f(x⋆)| , if f(x⋆) ̸= 0

or
f(xk) ≥ ϵ , if f(x⋆) = 0

and
r(xk) < ϵ2 .

For our numerical tests, we use ϵ = 0.01 to determine a successful return, i.e., we
require a final accuracy of one per cent. Note that in all cases, NLPQLF is called with
a termination tolerance of 10−7, which is also used for solving the internal quadratic
program (5) extended by the feasibility constraint.

The Fortran implementation of the feasible SQP method introduced in the previous
section, is called NLPQLF. Functions and gradients must be provided by reverse com-
munication and the quadratic programming subproblems are solved by the primal-dual
method of Goldfarb and Idnani [3] based on numerically stable orthogonal decompositions.

However, the model functions of all test examples can be evaluated everywhere, and
we have to simulate infeasible domains. We consider only test problems with at least
one inequality constraint. This gives a subset of 94 problems, where we consider all
inequality constraints as feasible ones, i.e., we suppose that objective function and equality
constraints can be evaluated only at argument values x satisfying all inequality constraints.

In the subsequent tables, we use the notation
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code nsucc nfunc ngrad nf
func nf

grad time

NLPQLF 92 9 8 13 6 0.3
NLPQLP 94 26 15 - - 0.1

Table 1: Performance Results for Feasible and Non-Feasible SQP Codes

nsucc - number of successful test runs according to above definition
nfunc - average number of function evaluations in the outer cycle
ngrad - average number of gradient evaluations or iterations, respectively, in the

outer cycle

nf
func - average number of function evaluations to satisfy feasibility constraints

in (5)

nf
grad - average number of gradient evaluations to satisfy feasibility constraints

in (5)
f(x) - final objective function value
r(x) - final maximum constraint violation
time - total execution time for all test runs in seconds

To get nfunc or ngrad, we count each evaluation of a whole set of function or gradi-
ent values, respectively, for a given iterate xk. However, additional function evaluations
needed for gradient approximations, are not counted by nfunc. Their average number is
nfunc for forward differences used. The Fortran codes are compiled by the Intel Visual
Fortran Compiler, Version 11.0, 64 bit, under Windows 7 and Intel(R) Core(TM) i7-2720
CPU, 2.2 GHz, with 8 GB RAM.

3.2 An Ill-Post Test Case

A free material optimization (FMO) problem can be formulated by a nonlinear semidef-
inite programming (NSDP) problem based on a finite element discretization with m ele-
ments. The common FMO formulation is to minimize the maximal compliance

fT
j K

−1 (E) fj

for loads fj, j = 1, . . . , l, where l is the number of load cases andK (E) the global stiffness
matrix. A mathematically rigorous description is found, e.g., in Kocvara and Zowe [6]. As
a measure of the material stiffness, we use the traces of the elasticity matrices Ei. They
fulfill the basic requirements of linear elasticity, i.e., they are symmetric and positive
semidefinite. Moreover, volume and box constraints preventing singularities are included.

The design variable E is a block diagonal matrix consisting of symmetric matrices Ei,
i = 1, . . ., m, representing material properties of each finite element. The matrices Ei,
i = 1, . . .,m, must be symmetric and positive semidefinite to satisfy the basic requirements

7



of linear elasticity, see Bendsøe et al. [1]. Moreover, the variables might become zero in
some regions. This situation is known as vanishing material and Ei is interpreted as void.

For two-dimensional designs, we get elementary stiffness matrices of the form

Ei :=

 ei1 ei2 ei3
ei2 ei4 ei5
ei3 ei5 ei6

 ≽ 0, i = 1, . . . ,m (9)

with six variables identifying the symmetric matrix Ei.
The stiffness of the structure with respect to loads fj, j = 1, . . ., l, is then given by

fT
j uj, j = 1, . . . , l, (10)

where uj (E) ∈ IR3 is the displacement vector determined by the equilibrium equations

K (E)uj (E) = fj, j = 1, . . . , l, (11)

which are derived from Hooke’s law subject to internal forces and acting loads.
We consider now the simplest possible case with one element (m = 1) and one load

case (l = 1), to illustrate how NLPQLF treats the feasibility constraints which are, in this
case,

e1(E) := e3e1 − e22 (12)

e2(E) := e6
(
e3e1 − e22

)
− e24e3 − e25e1 + 2e2e4e5 (13)

where e1 > 0 is enforced by a lower bound. Moreover, we have to ensure that these
constraints remain positive throughout the algorithm also in case of round-off errors,
which can be prevented by an additional lower bound ϵ > 0. Together with a volume
constraint

traceE ≤ V

with a suitable available volume constant V > 0, we get our simplified test example

e ∈ IR6, u ∈ IR3 :

min fTu

Eu = f , ,

e3e1 − e22 ≥ ϵ ,

e6(e3e1 − e22)− e24e3 − e25e1 + 2e2e4e5 ≥ ϵ

e1 ≥ ϵ ,

Note that if E is positive definite when evaluating the equality constraints, u is uniquely
determined. The optimal elasticity tensor is
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E⋆ :=

 2 4 2
4 8 0.04
2 0.04 0.0012

 (14)

The code NLPQLF returns the subsequent output:

--------------------------------------------------------------------

START OF THE SQP FEASIBILITY RESTORATION ALGORITHM

--------------------------------------------------------------------

Parameters:

N = 9

MF = 4

MEF = 3

M = 2

ACC = 0.1000D-11

ACCF = 0.1000D-11

ACCQP = 0.1000D-13

MAXFUN = 20

MAXNM = 20

MAXIT = 1000

IPRINT = 2

Output in the following order:

IT - iteration number

F - objective function value

SCV - sum of constraint violations

NA - number of active constraints

I - number of line search iterations

ALPHA - steplength parameter

DELTA - additional variable to prevent inconsistency

KKT - Karush-Kuhn-Tucker optimality criterion

IT F SCV NA I ALPHA DELTA KKT

--------------------------------------------------------------------

1 0.00000000D+00 0.30D+01 6 0 0.00D+00 0.00D+00 0.10D+02

2 0.50001000D+01 0.00D+00 3 1 0.10D+01 0.00D+00 0.97D+00

3 0.40309784D+01 0.11D+00 3 1 0.10D+01 0.00D+00 0.25D+01

.............
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17 0.59678624D+00 0.26D+00 6 2 0.44D+00 0.00D+00 0.14D+00

18 0.51824810D+00 0.82D-01 6 1 0.10D+01 0.00D+00 0.14D-01

19 0.52789050D+00 0.52D-03 6 1 0.10D+01 0.00D+00 0.23D-01

20 0.50454185D+00 0.61D-02 6 1 0.10D+01 0.00D+00 0.49D-02

21 0.50001636D+00 0.34D-03 6 1 0.10D+01 0.00D+00 0.49D-04

22 0.50006505D+00 0.94D-08 6 1 0.10D+01 0.00D+00 0.51D-14

--- Final Convergence Analysis (NLPQLF) at Best Iterate ---

Best result at iteration: ITER = 22

Objective function value: F(X) = 0.50006505D+00

Solution values: X =

0.19998267D+01 0.39994450D+01 0.19997590D-01 0.79989732D+01

0.40000214D-01 0.12000658D-02 0.83230626D-01 0.20842296D+00

-0.11494539D-02

Constraint values: G(X) =

0.20751578D-09 0.15685549D-09 -0.44194164D-08 0.00000000D+00

-0.46272847D-08 -0.28232193D-10

Multipliers for constraints: U =

0.19568907D-05 0.32168807D-05 0.72772721D-07 0.83927742D-06

0.83919703D-06 0.14401838D-06

Number of function calls: NFUNC = 36

Number of gradient calls: NGRAD = 22

Average number of feasibility

iterations: NFEAS = 3

The extremely fast final convergence step is remarkable. On the other hand, NLPQLP
returns the subsequent lines, where an additional message is displayed whenever a feasi-
bility constraint is violated:

IT F SCV NA I ALPHA DELTA KKT

--------------------------------------------------------------------

1 0.00000000D+00 0.30D+01 6 0 0.00D+00 0.00D+00 0.15D+02

2 0.50001000D+01 0.00D+00 3 1 0.10D+01 0.00D+00 0.31D+00

3 0.46944595D+01 0.11D-01 3 1 0.10D+01 0.00D+00 0.13D+01

.............

13 0.13543634D+01 0.22D+00 3 2 0.10D+00 0.00D+00 0.12D+01

*** G(6) <0: -0.364653442476918

14 0.12412657D+01 0.22D+00 3 2 0.10D+00 0.00D+00 0.11D+01

*** G(6) <0: -1.20368856330328

15 0.11376287D+01 0.22D+00 3 2 0.10D+00 0.00D+00 0.10D+01

.............
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*** G(5) <0: -4.412994731370517E-004

28 0.50005501D+00 0.44D-03 6 1 0.10D+01 0.00D+00 0.84D-07

*** G(5) <0: -2.017533619177438E-004

29 0.50005503D+00 0.20D-03 6 1 0.10D+01 0.00D+00 0.16D-05

*** G(5) <0: -5.733124207759175E-003

*** G(5) <0: -2.389092677688828E-004

*** G(5) <0: -2.003091407198023E-004

30 0.50005503D+00 0.20D-03 6 3 0.10D-01 0.00D+00 0.20D-04

*** G(5) <0: -1.256826789441750E-005

31 0.50006484D+00 0.13D-04 6 1 0.10D+01 0.00D+00 0.88D-06

*** G(5) <0: -8.820606257881015E-006

32 0.50006459D+00 0.88D-05 6 1 0.10D+01 0.00D+00 0.88D-06

33 0.50006503D+00 0.20D-10 6 1 0.10D+01 0.00D+00 0.67D-10

34 0.50006503D+00 0.11D-11 6 1 0.10D+01 0.00D+00 0.33D-09

.............

43 0.50006501D+00 0.60D-08 6 1 0.10D+01 0.00D+00 0.11D-07

44 0.50006500D+00 0.34D-07 6 1 0.10D+01 0.00D+00 0.11D-07

45 0.50006501D+00 0.16D-11 6 1 0.10D+01 0.00D+00 0.16D-12

Objective function value: F(X) = 0.50006501D+00

Solution values: X =

0.19998200D+01 0.39994400D+01 0.19995400D-01 0.79989800D+01

0.39990800D-01 0.11999340D-02 0.10001110D+00 0.20002195D+00

0.10001045D-02

Constraint values: G(X) =

0.22204460D-14 -0.91042489D-15 -0.20244223D-14 0.00000000D+00

-0.15739283D-11 -0.55424415D-15

Multipliers for constraints: U =

0.10001100D+00 0.20002200D+00 0.10000196D-02 0.50012502D-01

0.50011502D-01 0.50019006D-02

Number of function calls: NFUNC = 65

Number of gradient calls: NGRAD = 45

Number of calls of QP solver: NQL = 45

3.3 Some Test Problems with Hard Feasibility Constraints

We generate a series of test examples with square roots of nonlinear expressions depending
on optimization variables. Proceeding from l = 4, n = 3l, me = 0, mf = 2l + 1, m = 2l,
some data
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a = (1500, 1400, 1000, 900)T

b = (-500, -400, -100, -100)T

c = (2500, 2700, 2000, 2400)T

d = (3000, 3000, 3000, 3000)T

e = (3500, 3400, 3100, 3100)T

and ν = 250, µ = 0.02, and γk = 100k + 200 for k = 1, . . ., 16, we define

f(x) := −
l∑

i=1

ci

(
fi1(x)√
di

+ 1− fi1(x)
2

di

)√
fi2(x) (15)

gi(x) :=
xl+i + µf(x)

ν
− 1 (16)

gl+1(x) := 1− 1

γk

l∑
i=1

xix2l+i (17)

gl+1+i(x) := −xl+i

ei
(x2l+i − aifi1(x)) (18)

(19)

where

fi1(x) :=
√
xix2l+i − bi (20)

fi2(x) := 1−
√
ei

aifi1(x)
xl+i (21)

for i = 1, . . ., l. Thus, feasibility constraints become

ei1(x) := xix2l+i − bi − ϵ (22)

ei2(x) := a2ixix2l+i − a2i bi − eix
2
l+i − ϵ (23)

where ϵ > 0 is introduced for numerical reasons, since inequality constraints can be
satisfied only subject to a certain tolerance. Note that all variables are non-negative.

Numerical results are presented in Tables 2 and 3 for l = 4. For test problems not
mentioned in Table 3, NLPQLP produced a severe error message (uphill search direction)
at start. In the other cases, NLPQLP stopped with a severe error when trying to solve
the first quadratic programming problem.
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k ifail nfunc ngrad f(x) r(x)
1 0 5 5 -55.587 0.27D-08
2 0 6 5 -57.768 0.00D+00
3 0 7 6 -61.718 0.11D-15
4 0 8 7 -62.469 0.72D-09
5 0 11 7 -61.756 0.00D+00
6 0 14 8 -60.999 0.00D+00
7 0 13 7 -62.539 0.00D+00
8 0 13 7 -63.556 0.00D+00
9 0 13 7 -63.055 0.19D-07
10 0 12 7 -65.962 0.48D-07
11 0 14 8 -64.532 0.00D+00
12 0 14 8 -65.973 0.00D+00
13 0 12 7 -64.136 0.00D+00
14 0 14 8 -65.994 0.00D+00
15 0 14 8 -66.822 0.67D-13
16 0 13 8 -69.726 0.16D-13

Table 2: Performance Results for NLPQLF

k ifail nfunc ngrad f(x) r(x)
4 136 1 1 187149.650 0.77D+04
5 122 1 1 218767.143 0.90D+04
8 129 1 1 313760.457 0.13D+05
9 135 1 1 345459.642 0.14D+05
10 122 1 1 377172.218 0.15D+05
12 123 1 1 440631.279 0.18D+05
13 129 1 1 472375.332 0.19D+05
14 123 1 1 504127.785 0.21D+05
15 123 1 1 535887.860 0.22D+05
16 136 1 1 567654.894 0.23D+05

Table 3: Performance Results for NLPQLP

13



4 Program Documentation

NLPQLF is implemented in form of a Fortran subroutine following the original imple-
mentation, i.e., the code NLPQLP, as closely as possible. The nonlinear programming
subproblem (5) is solved by NLPQLP. together with the quadratic programming solver
QL, an implementation of the primal-dual method of Goldfarb and Idnani [3].

Model functions and gradients are called by reverse communication. The user has to
provide functions and gradients in the same program which executes NLPQLF, according
to the following rules:

1. Choose starting values for the variables to be optimized, and store them in X.

2. Compute objective and all constraint function values values, and store them in F
and G, respectively.

3. Compute gradients of objective and all constraint functions, and store them in DF
and DG.

4. Set IFAIL=0 and execute NLPQLF.

5. If NLPQLF returns IFAIL=-1, compute objective and all constraint function values
g1(x), . . ., gmf

(x), e1(x), . . ., em(x) and store them in G in the same order. Then
call NLPQLF again, but do not change IFAIL.

6. If NLPQLF terminates with IFAIL=-2, compute gradient values subject to variables
stored in X for the objective function f(x) and all constraints and store them in
DG. Then call NLPQLF again without changing IFAIL.

7. If NLPQLF returns IFAIL=-3 and IFAILF=-1, compute constraint function values
of the feasibility constraints e1(x), . . ., em(x) and store them in G at positions
MF+1,...,MF+M. Then call NLPQLF again.

8. If NLPQLF returns IFAIL=-3 and IFAILF=-2, compute gradient values for the con-
straints e1(x), . . ., em(x) and store them in DG at row positions MF+1,...,MF+M.
Then call NLPQLF again.

9. If NLPQLF terminates with IFAIL=0, the internal stopping criteria are satisfied.
The variable values found in X are considered as a local solution of the nonlinear
program.

10. In case of IFAIL>0, an error occurred.
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Usage:

CALL NLPQLF( MF, MEF, M, MMAX, N,
/ NMAX, MNN6, X, F, G,
/ DF, DG, U, XL, XU,
/ ACC, ACCF, ACCQP, MAXFUN, MAXIT,
/ MAXF, RHOB, IPRINT, IPRTF, IOUT,
/ IFAIL, IFAILF, WA, LWA, KWA,
/ LKWA, LOGWA, LLOGWA )

Definition of the parameters:

MF : Number of constraints for which feasibility must be restored.

MEF : Number of equality constraints of these constraints.

M : Number of remaining feasibility constraints.

MMAX : Row dimension of GRAD and dimension of G. MMAX must
be at least one and not smaller than MF + M.

N : Number of variables.
NMAX : Dimensioning parameter, at least two and greater than N + 1.

MNN6 : Dimensioning parameter, must be set to MF + M + 2*N + 6
or higher when calling NLPQLF.

X(NMAX) : On input, X has to contain an initial guess for the solution. On
return, X is replaced by the last computed iterate.

F Objective function value f(x) passed to NLPQLF by reverse
communication.

G(MMAX) : Constraint function values passed to NLPQLF by reverse com-
munication in the order g1(x), . . ., gmf

(x), e1(x), . . ., em(x).

DF(NMAX) : Gradient of objective function.

DG(MMAX,NMAX) : DG is used to store gradients of the constraints at a current
iterate X in the order given above. In the driving program, the
row dimension of DG must be equal to MMAX.

U(MNN6) : On return, U contains the multipliers with respect to the last
computed iterate. The first MF + M locations contain the mul-
tipliers of the MF + M nonlinear constraints, the subsequent N
locations the multipliers of the lower bounds, and the following
N locations the multipliers of the upper bounds. At an optimal
solution, all multipliers with respect to inequality constraints
must be nonnegative.
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XL(NMAX), On input, the one-dimensional arrays XL and XU contain the

XU(NMAX): upper and lower bounds of the variables.

ACC : The user has to specify the desired final accuracy for the outer
optimization loop (e.g. 1.0D-7). The termination accuracy
should not be smaller than the accuracy by which gradients
are computed.

ACCF : The user has to specify the desired final accuracy for the SQP
solver NLPQLP to achieve feasibility (e.g. 1.0D-7). The ter-
mination accuracy should not be smaller than the accuracy by
which gradients are computed.

ACCQP : The tolerance is passed to the QP solver to perform several
tests, for example whether optimality conditions are satisfied
or whether a number is considered as zero or not.

MAXFUN : The integer variable defines an upper bound for the number of
function calls during the line search (e.g. 20). MAXFUN must
not be greater than 50. Used for both levels.

MAXIT : Maximum number of outer iterations, where one iteration cor-
responds to one formulation and solution of a nonlinear pro-
gramming subproblem, or, alternatively, one evaluation of gra-
dients (e.g. 100).

MAXF : Maximum number of feasibility iterations (e.g. 50).

RHOB : Parameter for initializing a restart in case of IFAIL=2 by set-
ting the BFGS-update matrix to rhob*I, where I denotes the
identity matrix. The number of restarts is bounded by MAX-
FUN. No restart is performed if RHOB is set to zero. Must be
non-negative (e.g. 100).

IPRINT : Specification of the desired output level.

0 - No output of the program.

1 - Only final convergence analysis.

2 - One line of intermediate results for each iteration.
3 - More detailed information for each iteration.
4 - Line search data displayed in addition.

IPRTF : Specification of the desired output level for the feasibility cycle,
as above.

IOUT : Integer indicating the desired output unit number, i.e. all write-
statements start with ’WRITE(IOUT,... ’. Used for both lev-
els.
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IFAIL : The parameter shows the reason for leaving NLPQLF. Initially,
IFAIL must be set to zero. On return IFAIL contains one of
the following values:

-3 - Compute function and gradients of e1, . . ., em(x).

-2 - Compute new gradient values.

-1 - Compute new function values.

0 - Optimality conditions satisfied.

1 - Stop after MAXIT iterations.

2 - Uphill search direction.

3 - Underflow when computing new BFGS-update matrix.

4 - Line search exceeded MAXFUN iterations.
5 - Length of a working array too short.

6 - False dimensions, e.g., M<MW, N≥NMAX.

7 - Search direction close to zero at infeasible iterate.
8 - Starting point violates lower or upper bound.

9 - Wrong input parameter, e.g., IPRINT, IOUT.

10 - Inconsistency in QP, division by zero.

11 - Infeasible starting point.

>100 - Error message of QP solver.

>1000 - Error message of lower level SQP solver, as above.

IFAILF : The parameter shows the reason for leaving NLPQLF, and es-
pecially for terminating the subproblem. Initially, IFAILF must
be set to zero. On return IFAILF contains one of the following
values:
-2 - Compute new gradient values of e1, . . ., em(x).

-1 - Compute new function values of e1, . . ., em(x).

WA(LWA) : Real working array of length LWA.

LWA : Length of the real working array WA. LWA must be at
least 7*NMAX*NMAX/2 + NMAX*MMAX + 61*NMAX +
18*MMAX + 270.

KWA(LKWA) : Integer working array of length LKWA.

LKWA : Length of the integer working array KWA. LKWA should be at
least 2*NMAX + 30. On return, KWA(1) and KWA(2) contain
the number of function and derivative evaluations, respectively,
and KWA(3) the number of function and derivative evaluations
for feasibility restoration.
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LOGWA(LLOGWA) : Logical working array of length LLOGWA.

LLOGWA : Length of the logical working array LOGWA. LLOGWA must
be at least 4*M + 20.

Some of the termination reasons depend on the accuracy used for approximating gradi-
ents. If we assume that all functions and gradients are computed within machine precision
and that the implementation is correct, there remain only the following possibilities that
could cause an error message:

1. The termination parameter ACC is too small, so that the numerical algorithm plays
around with round-off errors without being able to improve the solution. Especially
the Hessian approximation of the Lagrangian function becomes unstable in this case.
A straightforward remedy is to restart the optimization cycle again with a larger
stopping tolerance.

2. The constraints are contradicting, i.e., the set of feasible solutions is empty. There
is no way to find out, whether a general nonlinear and non-convex set possesses
a feasible point or not. Thus, the nonlinear programming algorithms will proceed
until running in any of the mentioned error situations. In this case, the correctness
of the model must be very carefully checked.

3. Constraints are feasible, but some of them there are degenerate, for example if some
of the constraints are redundant. One should know that SQP algorithms assume
the satisfaction of the so-called constraint qualification, i.e., that gradients of active
constraints are linearly independent at each iterate and in a neighborhood of an
optimal solution. In this situation, it is recommended to check the formulation of
the model constraints.

However, some of the error situations also occur if, because of wrong or non-accurate
gradients, the quadratic programming subproblem does not yield a descent direction for
the underlying merit function. In this case, one should try to improve the accuracy of
function evaluations, scale the model functions in a proper way, or start the algorithm
from other initial values.
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5 Example

To give an example how to organize the code, we minimize the Rosenbrock function

x1, x2 ∈ IR :

min 100(x2 − x21)
2 + (x1 − 1)2

x1 − log(β − x21 − x22 + ϵ) ≥ 0 ,

x21 + x22 ≤ β ,

−10 ≤ x1 ≤ 10 ,

−10 ≤ x2 ≤ 10

(24)

over a circle with radius β = 2 and subject to a logarithmic constraint. We have mf = 1
and m = 1, and the feasibility constraint is active. To guarantee that the arguments of
the logarithm are bounded away from zero, a small tolerance ϵ = 10−4 is added. Feasible
starting point is x0 = (−0.1,−0.1)T .

The Fortran source code for executing NLPQLF is listed below. The function block
inserted in the main program can be replaced by a subroutine call.

IMPLICIT NONE

INTEGER NMAX, MMAX, MNN6X, LWA, LKWA, LLOGWA

PARAMETER (NMAX = 4,

/ MMAX = 2,

/ MNN6X = MMAX + NMAX + NMAX + 6,

/ LWA = 7*NMAX*NMAX/2 + NMAX*MMAX + 61*NMAX

/ + 18*MMAX + 270,

/ LKWA = 2*NMAX + 30,

/ LLOGWA = 4*MMAX + 20)

INTEGER KWA(LKWA), N, MF, MEF, M, MNN6, MAXIT, MAXF,

/ MAXFUN, IPRINT, IPRTF, IOUT, IFAIL, IFAILF, I

DOUBLE PRECISION X(NMAX), G(MMAX), F, DF(NMAX), DG(MMAX,NMAX),

/ U(MNN6X), XL(NMAX), XU(NMAX), C(NMAX,NMAX),

/ D(NMAX), WA(LWA), ACC, ACCF, ACCQP, RHOB,

/ EPS, A, B, DA1, DA2

LOGICAL LOGWA(LLOGWA)

EXTERNAL QL

C

C Set some constants and initial values

C

EPS = 1.0D-4

B = 2.0D+0

IOUT = 6

ACC = 1.0D-12

ACCF = 1.0D-12

ACCQP = 1.0D-14

RHOB = 0.0D0

MAXIT = 100

MAXFUN = 20

MAXF = 50

IPRINT = 2

IPRTF = 0

N = 2

MF = 1

MEF = 0
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M = 1

MNN6 = MF + M + N + N + 6

IFAIL = 0

IFAILF = 0

DO I=1,N

X(I) = -0.1D0

XL(I) = -10.0D0

XU(I) = 10.0D0

ENDDO

C

C============================================================

C This is the main block to compute all function and gradient

C values.

C

1 CONTINUE

IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-1)) THEN

F = 100.0D0*(X(2) - X(1)**2)**2 + (X(1) - 1.0D0)**2

A = -X(1)**2 - X(2)**2 + B

G(1) = X(1) - DLOG(A + EPS)

G(2) = A

ENDIF

C

IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-2)) THEN

DF(1) = -400.0D0*X(1)*(X(2) - X(1)**2)

/ + 2.0D0*(X(1) - 1.0D0)

DF(2) = 200.0D0*(X(2) - X(1)**2)

A = -X(1)**2 - X(2)**2 + B

DA1 = -2.0D0*X(1)

DA2 = -2.0D0*X(2)

DG(1,1) = 1.0D0 - DA1/(A + EPS)

DG(1,2) = -DA2/(A + EPS)

DG(2,1) = DA1

DG(2,2) = DA2

ENDIF

C

IF (IFAILF.EQ.-1) THEN

G(2) = -X(1)**2 - X(2)**2 + B

ENDIF

C

IF (IFAILF.EQ.-2) THEN

DG(2,1) = -2.0D0*X(1)

DG(2,2) = -2.0D0*X(2)

ENDIF

C

C============================================================

C

CALL NLPQLF (MF, MEF, M, MMAX, N, NMAX, MNN6, X, F, G, DF, DG,

/ U, XL, XU, ACC, ACCF, ACCQP, MAXFUN, MAXIT, MAXF,

/ RHOB, IPRINT, IPRTF, IOUT, IFAIL, IFAILF,

/ WA, LWA, KWA, LKWA, LOGWA, LLOGWA, QL)

IF (IFAIL.LT.0) GOTO 1

C

STOP

END

The following output will appear on screen:

--------------------------------------------------------------------

START OF THE SQP FEASIBILITY RESTORATION ALGORITHM

--------------------------------------------------------------------
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Parameters:

N = 2

M = 2

ME = 0

ACC = 0.1000D-11

ACCF = 0.1000D-11

ACCQP = 0.1000D-13

MAXFUN = 20

MAXNM = 40

MAXIT = 500

IPRINT = 2

Output in the following order:

IT - iteration number

F - objective function value

SCV - sum of constraint violations

NA - number of active constraints

I - number of line search iterations

ALPHA - steplength parameter

DELTA - additional variable to prevent inconsistency

KKT - Karush-Kuhn-Tucker optimality criterion

IT F SCV NA I ALPHA DELTA KKT

--------------------------------------------------------------------

1 0.24200000D+01 0.78D+00 2 0 0.00D+00 0.00D+00 0.60D+02

2 0.72443791D+01 0.11D-14 2 1 0.10D+01 0.00D+00 0.35D+01

3 0.41623356D+01 0.22D-15 2 1 0.10D+01 0.00D+00 0.27D+01

4 0.19040508D+01 0.00D+00 2 1 0.10D+01 0.00D+00 0.18D+01

5 0.50640876D+00 0.14D-12 2 1 0.10D+01 0.00D+00 0.95D+00

6 0.13288026D-02 0.00D+00 2 1 0.10D+01 0.00D+00 0.27D-02

7 0.80093028D-06 0.64D-07 1 1 0.10D+01 0.00D+00 0.16D-05

8 0.37580269D-10 0.00D+00 0 1 0.10D+01 0.00D+00 0.00D+00

--- Final Convergence Analysis (NLPQLF) at Best Iterate ---

Best result at iteration: ITER = 8

Objective function value: F(X) = 0.37580269D-10

Solution values: X =

0.99999398D+00 0.99998807D+00

Multiplier values: U =

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00

Constraint values: G(X) =

0.99036505D+01 0.35891132D-04

Distance from lower bound: X-XL =

0.10999994D+02 0.10999988D+02

Distance from upper bound: XU-X =

0.90000060D+01 0.90000119D+01

Number of function calls: NFUNC = 8

Number of gradient calls: NGRAD = 8

Average number of feasibility

iterations: NFEAS = 5

When replacing the call of NLPQLF by a call of NLPQLP, we would get a negative
argument of the log-function after the initial step and a breakdown of the code, see below.

--------------------------------------------------------------------

START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

--------------------------------------------------------------------

Parameters:

N = 2
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M = 2

ME = 0

MODE = 0

ACC = 0.1000D-11

ACCQP = 0.1000D-13

STPMIN = 0.1000D-11

MAXFUN = 20

MAXNM = 40

MAXIT = 500

IPRINT = 2

Output in the following order:

IT - iteration number

F - objective function value

SCV - sum of constraint violations

NA - number of active constraints

I - number of line search iterations

ALPHA - steplength parameter

DELTA - additional variable to prevent inconsistency

KKT - Karush-Kuhn-Tucker optimality criterion

IT F SCV NA I ALPHA DELTA KKT

--------------------------------------------------------------------

1 0.24200000D+01 0.78D+00 2 0 0.00D+00 0.00D+00 0.39D+03

*** WARNING: Starting non-monotone line search

*** ERROR 4: Error in line search, e.g., more than MAXFUN iterations

--- Final Convergence Analysis at Last Iterate ---

Objective function value: F(X) = NaN

Solution values: X =

NaN NaN

Multiplier values: U =

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.11900000D+02

Constraint values: G(X) =

NaN NaN

Distance from lower bound: X-XL =

NaN NaN

Distance from upper bound: XU-X =

NaN NaN

--- Final Convergence Analysis at Best Iterate ---

Best result at iteration: ITER = 1

Objective function value: F(X) = 0.24200000D+01

Solution values: X =

-0.10000000D+00 -0.10000000D+00

Multiplier values: U =

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.11900000D+02

Constraint values: G(X) =

-0.78314735D+00 0.19800000D+01

Distance from lower bound: X-XL =

0.99000000D+01 0.99000000D+01

Distance from upper bound: XU-X =

0.10100000D+02 0.10100000D+02

Number of function calls: NFUNC = 41

Number of gradient calls: NGRAD = 1

Number of calls of QP solver: NQL = 1

Average number of feasibility
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iterations: NFEAS = 0

6 Conclusions

We present a modification of an SQP algorithm designed for guaranteeing feasible iter-
ates, which always remain in a convex set defined by nonlinear inequality constraints.
Thus, objective function values and also additional equality or inequality constraints are
evaluated only at points which are feasible subject to these constraints. Preliminary
numerical results show superlinear convergence. We have an analytical proof that the
sufficient descent direction is obtained, i.e., that the standard convergence properties of
SQP algorithms are not lost.
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