
NLPQLY: An Easy-To-Use Fortran Implementation of a

Sequential Quadratic Programming Algorithm

- User’s Guide -

Address: Prof. K. Schittkowski
Siedlerstr. 3
D - 95488 Eckersdorf
Germany

Phone: (+49) 921 32887

E-mail: klaus@schittkowski.de

Web: http://www.klaus-schittkowski.de

Date: November, 2012

Abstract

The Fortran subroutine NLPQLY simplifies the numerical solution of nonlinear
programming problems by calling the standard SQP code NLPQLP, where the call-
ing sequence is simplified as much as possible. A user has to provide objective and
constraint function values in the same code which calls NLPQLY. Derivatives are in-
ternally approximated by forward differences. The usage of the code is documented
and illustrated by an example.

Keywords: SQP, sequential quadratic programming, nonlinear programming, non-monotone
line search, numerical algorithm, distributed computing, Fortran codes, easy-to-use

1

1 Introduction

We consider the general optimization problem to minimize an objective function f under
nonlinear equality and inequality constraints,

x ∈ IRn :

min f(x)
gj(x) = 0 , j = 1, . . . ,me

gj(x) ≥ 0 , j = me + 1, . . . ,m
xl ≤ x ≤ xu

(1)

where x is an n-dimensional parameter vector. It is assumed that all problem functions
f(x) and gj(x), j = 1, . . ., m, are continuously differentiable on the whole IRn.

Sequential quadratic programming (SQP) is the standard general purpose method to
solve smooth nonlinear optimization problems, at least under the following assumptions:

• The problem is not too large.

• Functions and gradients can be evaluated with sufficiently high precision.

• The problem is smooth and well-scaled.

The code NLPQLP of Schittkowski [16, 27] is a Fortran implementation of a sequen-
tial quadratic programming (SQP) algorithm. The design of the numerical algorithm is
founded on extensive comparative numerical tests of Schittkowski [9, 13, 11], Schittkowski
et al. [28], Hock and Schittkowski [4], and on further theoretical investigations published
in [10, 12, 14, 15].

To conduct the numerical tests, a random test problem generator is developed for a
major comparative study, see [9]. Two collections with more than 300 academic and real-
life test problems are published in Hock and Schittkowski [4] and in Schittkowski [17].
Fortran source codes and a test frame can be downloaded from the home page of the
author,

http://www.klaus-schittkowski.de

see [27] for further details. New features of NLPQLP are the possibility to run the code
under a distributed system and to perform uphill steps in certain error situations.

In Section 2, we briefly outline the general mathematical structure of an SQP algo-
rithm. The usage of the Fortran subroutine is documented in Section 3 and Section 4
contains an illustrative example.

2

2 Sequential Quadratic Programming Methods

Sequential quadratic programming or SQP methods belong to the most powerful nonlinear
programming algorithms we know today for solving differentiable nonlinear programming
problems of the form (1). The theoretical background is described e.g. in Stoer [30] in
form of a review, or in Spellucci [29] in form of an extensive text book. From the more
practical point of view, SQP methods are also introduced in the books of Papalambros,
Wilde [5] and Edgar, Himmelblau [1]. Their excellent numerical performance is tested
and compared with other methods in Schittkowski [9], and since many years they belong
to the most frequently used algorithms to solve practical optimization problems.

To facilitate the notation of this section, we assume that upper and lower bounds xu
and xl are not handled separately, i.e., we consider the somewhat simpler formulation

x ∈ IRn :
min f(x)
gj(x) = 0 , j = 1, . . . ,me

gj(x) ≥ 0 , j = me + 1, . . . ,m
(2)

It is assumed that all problem functions f(x) and gj(x), j = 1, . . ., m, are continuously

differentiable on IRn.
The basic idea is to formulate and solve a quadratic programming subproblem in

each iteration which is obtained by linearizing the constraints and approximating the
Lagrangian function

L(x, u) := f(x)−
m∑
j=1

ujgj(x) (3)

quadratically, where x ∈ IRn is the primal variable and u = (u1, . . . , um)
T ∈ IRm the

multiplier vector.
To formulate the quadratic programming subproblem, we proceed from given iterates

xk ∈ IRn, an approximation of the solution, vk ∈ IRm, an approximation of the multipliers,
and Bk ∈ IRn×n, an approximation of the Hessian of the Lagrangian function. Then one
has to solve the quadratic programming problem

d ∈ IRn :

min 1
2
dTBkd+∇f(xk)Td

∇gj(xk)Td+ gj(xk) = 0 , j = 1, . . . ,me

∇gj(xk)Td+ gj(xk) ≥ 0 , j = me + 1, . . . ,m

(4)

Let dk be the optimal solution and uk the corresponding multiplier of this subproblem.
A new iterate is obtained by(

xk+1

vk+1

)
:=

(
xk
vk

)
+ αk

(
dk

uk − vk

)
(5)

where αk ∈ (0, 1] is a suitable steplength parameter.

3

Although we are able to guarantee that the matrix Bk is positive definite, it is possible
that (4) is not solvable due to inconsistent constraints. One possible remedy is to introduce
an additional variable δ ∈ IR, leading to a modified quadratic programming problem, see
Schittkowski [16] for details.

The steplength parameter αk is required in (5) to enforce global convergence of the SQP
method, i.e., the approximation of a point satisfying the necessary Karush-Kuhn-Tucker
optimality conditions when starting from arbitrary initial values, typically a user-provided
x0 ∈ IRn and v0 = 0, B0 = I. αk should satisfy at least a sufficient decrease condition of
a merit function ϕr(α) given by

ϕr(α) := ψr

((
x
v

)
+ α

(
d

u− v

))
(6)

with a suitable penalty function ψr(x, v). Implemented is the augmented Lagrangian
function

ψr(x, v) := f(x)−
∑
j∈J

(vjgj(x)−
1

2
rjgj(x)

2)− 1

2

∑
j∈K

v2j/rj , (7)

with J := {1, . . . ,me} ∪ {j : me < j ≤ m, gj(x) ≤ vj/rj} and K := {1, . . . ,m} \ J ,
cf. Schittkowski [14]. The objective function is penalized as soon as an iterate leaves the
feasible domain. The corresponding penalty parameters rj, j = 1, . . ., m that control the
degree of constraint violation, must carefully be chosen to guarantee a descent direction
of the merit function, see Schittkowski [14],

ϕ′
rk
(0) = ▽ψrk(xk, vk)

T

(
dk

uk − vk

)
< 0 . (8)

Finally one has to approximate the Hessian matrix of the Lagrangian function in a suit-
able way. To avoid calculation of second derivatives and to obtain a final superlinear
convergence rate, the standard approach is to update Bk by the BFGS quasi-Newton
formula, cf. Powell [7] or Stoer [30].

3 Program Documentation

NLPQLY is implemented in form of a Fortran subroutine. The quadratic programming
problem is solved by the code QL, an implementation of the primal-dual method of Gold-
farb and Idnani [2] going back to Powell [8], see also Schittkowski [25] for more details
about implementation and usage. Model functions must be provided by reverse commu-
nication. The user has to evaluate function values in the same program which executes
NLPQLY, according to the following rules:

1. Choose starting values for the variables to be optimized, and store them in the first
column of an array X.

4

2. Compute objective and all constraint function values, store them in a scalar variable
F and an array G, respectively.

3. Set IFAIL=0 and execute NLPQLY.

4. If NLPQLY returns with IFAIL¡0, compute objective and constraint function values
at variable values found in X, store them in F and G, and call NLPQLY again.

5. If NLPQLY terminates with IFAIL=0, the internal optimality criteria are satisfied.
In case of IFAIL>0, an error occurred.

Usage:

CALL NLPQLY(M, ME, MMAX, N, F
/ G, XL, XU, ACC, MAXIT,
/ IPRINT, IOUT, IFAIL, WA, LWA,
/ KWA, LKWA, ACT, LACT)

Definition of the parameters:

M : Total number of constraints.
ME : Number of equality constraints.

N : Number of optimization variables.

X(N) : Initially, the double precision array X has to contain start-
ing values for the optimal solution. On return, X is replaced
by the current iterate.

F : The double precision variable F has to contain the objective
function value evaluated at X when calling NLPQLY.

G(M) : The double precision array G has to contain the constraint
function values at an iterate X when calling NLPQLY. If
M=0, use G(1) to dimension G in the calling routine.

XL(N),XU(N) : When calling NLPQLY the first time, the double preci-
sion arrays XL and XU must contain the lower and upper
bounds of the variables, respectively.

5

ACC : The user has to specify the desired final accuracy (e.g.
1.0D-7). Since derivatives are computed by forward dif-
ferences, it is not recommended to insert a value smaller
than 1.0D-7.

MAXIT : The integer variable has to contain the maximum number
of iterations when calling NLPQLY the first time. (e.g.
100).

IPRINT : Specification of the desired output level.

0 - No output of the program.

1 - Only final convergence analysis.

2 - One line of intermediate results for each iteration.
3 - More detailed information for each iteration.
4 - More line search data displayed.

Note that constraint and multiplier values are not displayed
for N,M>1,000.

IOUT : Integer indicating the desired output unit number, i.e., all
write-statements start with ’WRITE(IOUT,... ’.

IFAIL : The parameter shows the reason for terminating a solution
process. Initially, IFAIL must be set to zero. On return,
IFAIL could contain the following values:

< 0 - Compute new function values.

0 - Optimality conditions satisfied.

1 - Stop after MAXIT iterations.

2 - Uphill search direction.

3 - Underflow when computing new BFGS-update matrix.

4 - Line search could not be terminated.
5 - Length of a working array too short.

6 - Dummy.

7 - Search direction close to zero at infeasible iterate.
8 - Starting point violates lower or upper bound.

9 - Wrong input parameter, e.g., IPRINT, IOUT.

10 - Inconsistency in QP, division by zero.

>100 - Error message of QP solver.

6

WA(LWA) : WA is a double precision working array of length LWA.

LWA : Length of WA, has to be at least at least 3*N*N + M*N
+ 45*N + 12*M + 200.

KWA(LKWA) : KWA is an integer working array of length LKWA.

LKWA : Length of KWA, has to be at least N + 27.

ACT(LACT) : The logical array indicates constraints, which NLPQLY
considers to be active at the last computed iterate, i.e.,
G(J) is active, if and only if ACT(J) is true for J=1,...,M.

LACT : Length ACT, has to be at least 2*M+10.

There are the following possibilities that could cause an error message:

1. The termination parameter ACC is too small, so that the numerical algorithm plays
around with round-off errors without being able to improve the solution. Especially
the Hessian approximation of the Lagrangian function becomes unstable in this case.
A straightforward remedy is to restart the optimization cycle again with a larger
stopping tolerance.

2. The constraints are contradicting, i.e., the set of feasible solutions is empty. There
is no way to find out, whether nonlinear and non-convex constraints are infeasible
or not. Thus, the nonlinear programming algorithms will proceed until running in
any of the mentioned error situations. In this case, the correctness of the model
must be very carefully checked.

3. Constraints are feasible, but active constraints are degenerate, e.g., redundant. One
should know that SQP algorithms assume the satisfaction of the so-called linear
independency constraint qualification, i.e., that gradients of active constraints are
linearly independent at each iterate and in a neighborhood of an optimal solution. In
this situation, it is recommended to check the formulation of the model constraints.

However, some of the error situations also occur if, because of inaccurate gradients,
the quadratic programming subproblem does not yield a descent direction for the under-
lying merit function. In this case, one should try to improve the accuracy of function
evaluations, scale the model functions in a proper way, or start the algorithm from other
initial values.

Important Note: The tolerance for approximating derivatives by a forward difference
formula is set to the square root of the machine precision. This might be too small in
case of inaccurate function values.

7

4 Example

To give an example how to organize the code, we consider Rosenbrock’s post office prob-
lem, i.e., test problem TP37 of Hock and Schittkowski [4],

x1, x2 ∈ IR :

min −x1x2x3
x1 + 2x2 + 2x3 ≥ 0
72− x1 − 2x2 − 2x3 ≥ 0
0 ≤ x1 ≤ 42
0 ≤ x2 ≤ 42
0 ≤ x3 ≤ 42

(9)

The Fortran source code for executing NLPQLP is listed below. Gradients are approxi-
mated by forward differences. The function block inserted in the main program can be
replaced by a subroutine call.

IMPLICIT NONE

INTEGER N, M, LWA, LKWA, LACTIV

PARAMETER (N = 3,

/ M = 2,

/ LWA = 3*N*N + M*N + 45*N + 12*M + 200,

/ LKWA = N + 27,

/ LACTIV = 2*M + 10)

INTEGER KWA(LKWA), ME, MAXIT, IPRINT, IOUT, IFAIL, I,

/ NFUNC

DOUBLE PRECISION X(N), F, G(M), XL(N), XU(N), WA(LWA), ACC

LOGICAL ACTIVE(LACTIV)

C

C Set some constants and starting values

C

IOUT = 6

ACC = 1.0D-8

MAXIT = 100

IPRINT = 2

ME = 0

IFAIL = 0

NFUNC = 0

DO I=1,N

X(I) = 10.0D0

XL(I) = 0.0D0

XU(I) = 42.0D0

ENDDO

1 CONTINUE

C==

8

C This is the main block to compute all function values.

C The block is executed either for computing a steplength

C sequentially or for approximating gradients by forward

C differences.

C

F = -X(1)*X(2)*X(3)

G(1) = X(1) + 2.0D0*X(2) + 2.0D0*X(3)

G(2) = 72.0D0 - X(1) - 2.0D0*X(2) - 2.0D0*X(3)

C

C==

NFUNC = NFUNC + 1

CALL NLPQLY (M, ME, N, X, F,

/ G, XL, XU, ACC, MAXIT,

/ IPRINT, IOUT, IFAIL, WA, LWA,

/ KWA, LKWA, ACTIVE, LACTIV)

IF (IFAIL.LT.0) GOTO 1

C

WRITE(IOUT,1000) NFUNC

1000 FORMAT(’ *** Number of function calls: ’,I3)

C

STOP

END

5 Conclusions

We present an easy-to-use version of the SQP code NLPQLP, see Schittkowski [27], where
a limited set of parameters is passed and where only objective and constraint function are
to be provided by the user. Derivatives are evaluated internally by forward differences.

References

[1] Edgar T.F., Himmelblau D.M. (1988): Optimization of Chemical Processes, Mc-
Graw Hill

[2] Goldfarb D., Idnani A. (1983): A numerically stable method for solving strictly
convex quadratic programs, Mathematical Programming, Vol. 27, 1-33

[3] Hock W., Schittkowski K. (1981): Test Examples for Nonlinear Programming
Codes, Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer

[4] Hock W., Schittkowski K. (1983): A comparative performance evaluation of 27
nonlinear programming codes, Computing, Vol. 30, 335-358

9

[5] Papalambros P.Y., Wilde D.J. (1988): Principles of Optimal Design, Cambridge
University Press

[6] Powell M.J.D. (1978): A fast algorithm for nonlinearly constraint optimization cal-
culations, in: Numerical Analysis, G.A. Watson ed., Lecture Notes in Mathematics,
Vol. 630, Springer

[7] Powell M.J.D. (1978): The convergence of variable metric methods for nonlinearly
constrained optimization calculations, in: Nonlinear Programming 3, O.L. Man-
gasarian, R.R. Meyer, S.M. Robinson eds., Academic Press

[8] Powell M.J.D. (1983): On the quadratic programming algorithm of Goldfarb and
Idnani. Report DAMTP 1983/Na 19, University of Cambridge, Cambridge

[9] Schittkowski K. (1980): Nonlinear Programming Codes, Lecture Notes in Economics
and Mathematical Systems, Vol. 183 Springer

[10] Schittkowski K. (1981): The nonlinear programming method of Wilson, Han and
Powell. Part 1: Convergence analysis, Numerische Mathematik, Vol. 38, 83-114

[11] Schittkowski K. (1981): The nonlinear programming method of Wilson, Han and
Powell. Part 2: An efficient implementation with linear least squares subproblems,
Numerische Mathematik, Vol. 38, 115-127

[12] Schittkowski K. (1982): Nonlinear programming methods with linear least squares
subproblems, in: Evaluating Mathematical Programming Techniques, J.M. Mulvey
ed., Lecture Notes in Economics and Mathematical Systems, Vol. 199, Springer

[13] Schittkowski K. (1983): Theory, implementation and test of a nonlinear program-
ming algorithm, in: Optimization Methods in Structural Design, H. Eschenauer, N.
Olhoff eds., Wissenschaftsverlag

[14] Schittkowski K. (1983): On the convergence of a sequential quadratic programming
method with an augmented Lagrangian search direction, Mathematische Operations-
forschung und Statistik, Series Optimization, Vol. 14, 197-216

[15] Schittkowski K. (1985): On the global convergence of nonlinear programming algo-
rithms, ASME Journal of Mechanics, Transmissions, and Automation in Design,
Vol. 107, 454-458

[16] Schittkowski K. (1985/86): NLPQL: A Fortran subroutine solving constrained non-
linear programming problems, Annals of Operations Research, Vol. 5, 485-500

[17] Schittkowski K. (1987a): More Test Examples for Nonlinear Programming, Lecture
Notes in Economics and Mathematical Systems, Vol. 182, Springer

10

[18] Schittkowski K. (1987): New routines in MATH/LIBRARY for nonlinear program-
ming problems, IMSL Directions, Vol. 4, No. 3

[19] Schittkowski K. (1988): Solving nonlinear least squares problems by a general pur-
pose SQP-method, in: Trends in Mathematical Optimization, K.-H. Hoffmann, J.-
B. Hiriart-Urruty, C. Lemarechal, J. Zowe eds., International Series of Numerical
Mathematics, Vol. 84, Birkhäuser, 295-309

[20] Schittkowski K. (1992): Solving nonlinear programming problems with very many
constraints, Optimization, Vol. 25, 179-196

[21] Schittkowski K. (1994): Parameter estimation in systems of nonlinear equations,
Numerische Mathematik, Vol. 68, 129-142

[22] Schittkowski K. (2002): Test problems for nonlinear programming - user’s guide,
Report, Department of Mathematics, University of Bayreuth

[23] Schittkowski K. (2002): Numerical Data Fitting in Dynamical Systems, Kluwer
Academic Publishers, Dordrecht

[24] Schittkowski K. (2002): EASY-FIT: A software system for data fitting in dynamic
systems, Structural and Multidisciplinary Optimization, Vol. 23, No. 2, 153-169

[25] Schittkowski K. (2003): QL: A Fortran code for convex quadratic programming -
user’s guide, Report, Department of Mathematics, University of Bayreuth, 2003

[26] Schittkowski K. (2003): DFNLP: A Fortran implementation of an SQP-Gauss-
Newton algorithm - user’s guide, Report, Department of Mathematics, University
of Bayreuth, 2003

[27] Schittkowski K. (2009): NLPQLP: A Fortran implementation of a sequential
quadratic programming algorithm with distributed and non-monotone line search
- user’s guide, Report, Department of Computer Science, University of Bayreuth

[28] Schittkowski K., Zillober C., Zotemantel R. (1994): Numerical comparison of non-
linear programming algorithms for structural optimization, Structural Optimization,
Vol. 7, No. 1, 1-28

[29] Spellucci P. (1993): Numerische Verfahren der nichtlinearen Optimierung,
Birkhäuser

[30] Stoer J. (1985): Foundations of recursive quadratic programming methods for solv-
ing nonlinear programs, in: Computational Mathematical Programming, K. Schitt-
kowski, ed., NATO ASI Series, Series F: Computer and Systems Sciences, Vol. 15,
Springer

11

