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Abstract

We present numerical results of a comparative study of codes for nonlinear and non-
convex mixed-integer optimization. The underlying algorithms are based on sequential
quadratic programming (SQP) with stabilization by trust-regions, linear outer approxi-
mations, and branch-and-bound techniques. The mixed-integer quadratic programming
subproblems are solved by a branch-and-cut algorithm. Second order information is up-
dated by a quasi-Newton update formula (BFGS) applied to the Lagrange function for
continuous, but also for integer variables. We do not require that the model functions
can be evaluated at fractional values of the integer variables. Thus, partial derivatives
with respect to integer variables are replaced by descent directions obtained from function
values at neighboring grid points, and the number of simulations or function evaluations,
respectively, is our main performance criterion to measure the efficiency of a code. Nu-
merical results are presented for a set of 100 academic mixed-integer test problems. Since
not all of our test examples are convex, we reach the best-known solutions in about 90 %
of the test runs, but at least feasible solutions in the other cases. The average number of
function evaluations of the new mixed-integer SQP code is between 240 and 500 including
those needed for one- or two-sided approximations of partial derivatives or descent direc-
tions, respectively. In addition, we present numerical results for a set of 55 test problems
with some practical background in petroleum engineering.
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1 Introduction

We consider the general mixed-integer nonlinear program to minimize a scalar objective function
under nonlinear equality and inequality constraints,

minimize
x∈IRnc , y∈Z

ni
f(x, y)

subject to gj(x, y) = 0 , j = 1, . . . , me ,

gj(x, y) ≥ 0 , j = me + 1, . . . , m ,

x ∈ X , y ∈ Y .

(1)

x denotes the continuous and y the integer variables including binary variables. The two sets
X and Y are defined by upper and lower bounds of variables,

X := {x ∈ IRnc : xl ≤ x ≤ xu} ,

Y := {y ∈ Z
ni : yl ≤ y ≤ yu} ,

(2)

where nc is the number of continuous variables and ni is the number of integer variables. It is
assumed that the problem functions f(x, y) and gj(x, y), j = 1, . . ., m, are twice continuously
differentiable with respect to x for all x ∈ X .

Numerous algorithms to address mixed-integer nonlinear programs have been proposed in
the past, see for example Floudas [25] or Grossmann and Kravanja [29] for review papers.
Comparative results of a variety of solvers are found in Bonami, Kilinç, and Linderoth [8], and
a review on available software is published by Bussieck and Vigerske [11].

Typically, these approaches require continuous relaxations of integer variables. By a contin-
uous relaxation, we understand that integer variables can be treated as continuous variables,
i.e., function values can be computed for all y ∈ YIR, where

YIR := {y ∈ IRni : yl ≤ y ≤ yu} . (3)

In this case, we require in addition that f(x, y) and gj(x, y), j = 1, . . ., m, are also twice
continuously differentiable subject to all y ∈ YIR.

However, many real-life mixed-integer problems are not relaxable. Functions are often
highly nonlinear and nonconvex and sometimes their values can only be computed by complex
simulation software. Examples arise in mechanical, electrical, aerospace, chemical, automotive,
petroleum and many other areas. An industrial case study is considered by Bünner, Schitt-
kowski, and van de Braak [10], where typical integer variables are the number of fingers and
layers of an electronic filter, which cannot be relaxed due to the underlying simulation tools.
Other typical non-relaxable integer variables are the number of rips and rills of a corrugated
horn antenna, see Hartwanger, Schittkowski, and Wolf [32], or the number and position of
trays of a distillation column, see Thomas and Kröner [54]. In Exler, et al. [18], the authors
consider a wastewater treatment plant for nitrogen removal. The feed layer in a settler is a
integer variable with physical meaning that is not relaxable due to the underlying Simulink
implementation.
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When considering non-relaxable integer variables, we do not have in mind categorical vari-
ables, e.g., the series of planets of flyby missions or the type and the number of boosters of
a launch vehicle, see Schlueter [52], where a change of an integer value leads to a structural
change of the underlying model. In this case, there is not a natural or intrinsic ordering of the
decision variables in a category. We are more interested in applications, especially in engineer-
ing sciences, which are modeled by non-relaxable integer variables with some physical meaning.
In other words, function values implicitly depend on each other, please see the examples men-
tioned above. Consider, e.g., the number of fingers of an electronic filter. A change from 36
to 37 would not lead to a dramatic change of the objective or constraint functions. A plot of
objective function values over two of these integer variables, evaluated only at integer values,
would look like a smooth grid. This observation is the main motivation for our idea to apply
quadratic approximations.

We suppose that a black box simulation code provides function values, i.e., that we do not
know anything about the internal analytical structure of the model functions nor how the model
equations are implemented. Since, in addition, most simulation systems in engineering sciences
are highly complex, calculation times of these black box simulation codes are often excessive.
Typical requirements for an optimization method in this environment are to limit the number of
function evaluations to fewer than 1000 and to operate efficiently without any partial derivative
information.

In the past decades, several heuristic and deterministic methods to solve optimization prob-
lems with non-relaxable integer variables were proposed. Search algorithms were developed
that explore the integer space, as pattern search algorithms, see, e.g., Audet and Dennis [2].
Other approaches transform the mixed-integer problem into a continuous problem and make
use of nonlinear optimization techniques. Li and Chou [39] for instance, replace the integrality
condition by continuous nonlinear constraints, and the resulting highly nonconvex program is
solved by a global optimization algorithm.

Branch-and-bound methods also transform the problem. Here a series of relaxed nonlinear
programs obtained by restricting the variable range of the relaxed integer variables must be
solved, see Gupta and Ravindran [30] or Borchers and Mitchell [9]. When applying an SQP
algorithm at a node of the search tree, it is possible to apply early branching as described by
Leyffer [38].

Another frequently used solution method for solving mixed-integer nonlinear programming
problems is based on linear outer approximations. The idea is introduced by Duran and Gross-
mann [17] and is extended by Fletcher and Leyffer [24]. Convergence towards the global optimal
solution of a convex program is guaranteed by considering a gradually improving mixed-integer
linear relaxation of the original mixed-integer nonlinear program. A related approach was pro-
posed by Westerlund and Pörn [57]. The ECP technique applies cutting planes as in linear
programming.

Several codes were implemented that address mixed-integer problems. BARON solves non-
convex optimization problems with continuous and integer variables based on the Branch And
Reduce Optimization Navigator combining constraint propagation, interval analysis, and du-
ality with enhanced branch and bound concepts, see Sahinidis and Tawarmalani [47] and
Tawarmalani and Sahinidis [53]. Convex and polyhedral relaxations are used by Nowak et
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al. [42] to generate inner and outer approximations, where the resulting code is called LAGO.
Moreover, the code DICOPT realizes an extension of the outer approximation method for an
equality relaxation strategy, and comes with some heuristics for solving nonconvex problems,
see Viswanathan and Grossmann [56].

Open-source solvers have been created within the COIN-OR initiative: BONMIN consists
of sophisticated branch-and-bound, outer approximation, branch-and-cut and hybrid codes,
see Bonami et al. [7]. Another implementation is COUENNE based on convex over- and
under-envelopes and a branch-and-bound algorithm to solve nonconvex mixed-integer nonlinear
programs, see Belotti et al. [6, 5].

A first version of our mixed-integer sequential quadratic programming method (MISQP)
was discussed and implemented by Exler et al. [21]. The algorithm proceeds from the SQP-
based trust region method of Yuan [58], see also Schittkowski and Yuan [51], and is adapted
to solve nonlinear mixed-integer optimization problems by solving a sequence of mixed-integer
quadratic subproblems. The algorithm is outlined in Section 2 in more detail.

A possible stabilization of the method of Exler et al. [21] is achieved by adding linear
outer approximations as proposed by Fletcher and Leyffer [24] and Duran and Grossmann [17].
These modifications are presented in Section 3 together with a general outline of linear outer
approximation algorithms.

For a sequential quadratic programming (SQP) method, but also for applying outer ap-
proximations, the availability of first partial derivatives is crucial. An important question is
how to replace partial derivatives with respect to non-relaxable integer variables. Since f(x, y)
and g1(x, y), . . . , gm(x, y) cannot be evaluated at small perturbations of an integer variable
value, we compute a descent direction instead. For the objective function and given x ∈ X and
y ∈ Y , we apply a two-sided difference formula,

∂f(x, y)

∂yj
≈ 1

2
(f(x, y1, . . . , yj + 1, . . . , yni

)− f(x, y1, . . . , yj − 1, . . . , yni
)) (4)

for j = 1, . . . , ni, where y = (y1, . . . , yni
)T . The same formula is used for constraint functions.

Since our algorithms guarantee satisfaction of box constraints, the formula is adapted at a
bound. For binary variables or for variables at a bound, (4) is replaced by a forward or backward
difference formula, respectively. Partial derivatives with respect to continuous variables are
computed by standard difference formulae, but can be provided by a user also in analytical
form.

There is a very attractive advantage of approximating integer derivatives at grid points.
The additional function evaluations for gradient approximations are not wasted. We keep track
of the best feasible iterate regardless whether it has been used for computing a descent direction
or for the main iteration of our MISQP algorithm, and return to this point whenever it seems
to be profitable.

It is important to understand that our SQP-type algorithm is also applicable to solve relax-
able mixed-integer programming problems. If analytical partial derivatives are available, the
user may pass them to the MISQP code. Moreover, if the number of integer variables is set
to zero, i.e., if ni = 0, the algorithm behaves exactly like a standard SQP-code for continuous
optimization stabilized by trust-regions.
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An interesting question is whether the usage of analytical derivatives, if available, leads to
a better performance or not. Our numerical results indicate that numerical approximations
at grid points lead to a somewhat more reliable implementation, i.e., more problems are suc-
cessfully solved. A possible explanation might be that the main goal is to achieve a descent
direction with respect to a suitable merit function from one grid point to the next, not locally
around the current iterate.

Section 4 outlines the test framework and contains numerical results. To compare robustness
and efficiency of our codes, we develop criteria to decide whether the result of a test run can
be considered as a successful one or not. Two sets of test problems are considered, a selection
of 100 academic mixed integer nonlinear test problems published in Schittkowski [50], and a
set of 55 test problems with practical background in petroleum engineering. Both are used to
compare our codes MISQP [20], MISQPN [19], MISQPOA [36], and MINLPB4 [35]. Some of
them are executed with different parameters to test alternative formulations. It turns out that
different versions of MISQP solve between 70 and 90 problems out of a set of 100 academic test
examples, whereas the average number of function evaluations is between 240 and 500 including
those needed for approximating derivatives. Numerical results are presented in form of mean
values, priority factors, and performance profiles.

2 A Sequential Quadratic Programming Algorithm with

Trust Region Stabilization

In this section, we present an SQP-type algorithm developed by Exler and Schittkowski [21].
The algorithm extends the concept of a trust region SQP algorithm as described by Yuan [58],
Conn et al. [14], Schittkowski and Yuan [51] and many others, to mixed-integer nonlinear
optimization. Instead of solving continuous quadratic programs, we solve a sequence of mixed-
integer convex quadratic optimization problems to approximate a solution of (1).

The Lagrange function of the mixed-integer nonlinear program (1) is

L(x, y, u, vl, vu, wl, wu) := f(x, y)−∑m
j=1 ujgj(x, y)− vTl (x− xl)− vTu (xu − x)

−wT
l (y − yl)− wT

u (yu − y) ,
(5)

where uj is the Lagrange multiplier for the j-th constraint, j = 1, . . ., m, where vl and vu are
multipliers for lower and upper bounds of the continuous variables, and where wl and wu are
multipliers for lower and upper bounds of the integer variables. Note that in the presence of
integer variables, local optimality criteria based on the Lagrange function (5) do not exist. In
the mixed-integer case, multipliers are only used for updating a quasi-Newton matrix. They
become more important in case of continuous optimization (ni = 0) to serve as local optimality
criteria.

To simplify the notation, we define

g(x, y) := (g1(x, y), . . . , gm(x, y))
T ,

∇g(x, y) := (∇g1(x, y), . . . ,∇gm(x, y)) .
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The method is based on the exact L∞-penalty function

Pσ(x, y) := f(x, y) + σ‖g(x, y)−‖∞ , (6)

where g(x, y)− ∈ IRm is defined as

gj(x, y)
− := gj(x, y) , 1 ≤ j ≤ me (7)

and
gj(x, y)

− := min(gj(x, y), 0) , me + 1 ≤ j ≤ m . (8)

The penalty parameter σ is adapted by the algorithm. It is guaranteed that our algorithm
always stays within the bounds given by X and Y , see (2), which are therefore not included in
Pσ(x, y).

In the remainder of this section, the subscript k denotes the iteration index. The basic idea
of trust region methods is to approximate the original problem by a simpler one, in our case a
convex mixed-integer quadratic program. In addition, we add a trusted neighborhood to avoid
steps that are too large. The solution of the quadratic subproblem subject to the trust region is
a potential step towards a new iterate. Depending on the quality of the predicted improvement
compared to the actual change in the merit function (6), the trial point is accepted or rejected
and the trust region is enlarged or reduced, respectively.

To approximate Pσk
(xk, yk) in the k-th iteration step, where (xk, yk) is a current iterate and

σk a suitable penalty parameter, we successively solve the subproblem

minimize
dc∈IRnc, di∈Z

ni

∇f(xk, yk)
Td+ 1

2
dTCkd+ σk

∥∥∥(g(xk, yk) +∇g(xk, yk)
Td

)−∥∥∥
∞

subject to ‖dc‖∞ ≤ Δc
k , ‖di‖∞ ≤ Δi

k ,

xk + dc ∈ X , yk + di ∈ Y ,

(9)

with d := (dc, di). Note that (9) is feasible and that Ck ∈ IR(nc+ni)×(nc+ni) is positive definite for
all k. Moreover, it is guaranteed that the subsequent iterate xk+1 := xk + dck , yk+1 := yk + dik,
if accepted, satisfies the bounds given by (2). Δc

k > 0 and Δi
k ≥ 0 denote the trust region radii

for the continuous and the integer search space, respectively.
We use the L∞-norm to be able to replace (9) by a standard mixed-integer quadratic pro-

gram, see below. To simplify the notation, binary variables are considered as integer variables
with bounds 0 and 1. Our code MISQP handles both types of variables separately.

During the remainder of this section, we denote the objective function of the mixed-integer
subproblem (9) by

Φk(d) := ∇f(xk, yk)
Td+

1

2
dTCkd+ σk

∥∥∥(g(xk, yk) +∇g(xk, yk)
Td

)−∥∥∥
∞

. (10)

Since (9) is non-smooth, we introduce a slack variable η ∈ IR to replace (9) by an equivalent
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mixed-integer quadratic programming problem

minimize
dc∈IRnc, di∈Z

ni , η∈IR
∇f(xk, yk)

Td+ 1
2
dTCkd+ σkη

subject to η + gj(xk, yk) +∇gj(xk, yk)
Td ≥ 0 , j = 1, . . . , me ,

η − gj(xk, yk)−∇gj(xk, yk)
Td ≥ 0 , j = 1, . . . , me ,

η + gj(xk, yk) +∇gj(xk, yk)
Td ≥ 0 , j = me + 1, . . . , m ,

‖dc‖∞ ≤ Δc
k , ‖di‖∞ ≤ Δi

k ,

xk + dc ∈ X , yk + di ∈ Y , η ≥ 0 ,

(11)

where d := (dc, di). If we fix the integer variables, we get the continuous convex quadratic
program

minimize
dc∈IRnc, η∈IR

∇xf(xk, yk)
Tdc + 1

2
dcTCc

kd
c + σkη

subject to η + gj(xk, yk) +∇xgj(xk, yk)
Tdc ≥ 0 , j = 1, . . . , me ,

η − gj(xk, yk)−∇xgj(xk, yk)
Tdc ≥ 0 , j = 1, . . . , me ,

η + gj(xk, yk) +∇xgj(xk, yk)
Tdc ≥ 0 , j = me + 1, . . . , m ,

‖dc‖∞ ≤ Δc
k , η ≥ 0 , xk + dc ∈ X .

(12)

In this case, the matrix Cc
k is the nc×nc upper left part of Ck ∈ IR(nc+ni)×(nc+ni). Ck is updated

by a BFGS quasi-Newton formula, see e.g. Fletcher [22], subject to gradients of the Lagrange
function (5). Partial derivatives subject to integer variables are approximated, e.g., by the
difference formula (4), if the functions f(x, y) and g1(x, y), . . ., gm(x, y) are not relaxable.

However, for updating Ck we need Lagrange multipliers with respect to all constraints at a
new iterate xk+1 ∈ X, yk+1 ∈ Y . They can be calculated by solving the following least squares
problem related to the KKT conditions,

minimize
u∈IRm, vl, vu∈IRnc,

wl, wu∈IRni

∥∥∥∥∇f(xk+1, yk+1)−∇g(xk+1, yk+1) u−
(

vl
wl

)
+

(
vu
wu

)∥∥∥∥
2

2

subject to uj ≥ 0 for all j ∈ Jk, j > me , and uj = 0 for all j ∈ Jk ,

vlj ≥ 0 for all j ∈ V l
k , and vlj = 0 for all j ∈ V

l

k ,

vuj ≥ 0 for all j ∈ V u
k , and vuj = 0 for all j ∈ V

u

k ,

wl
j ≥ 0 for all j ∈ W l

k, and wl
j = 0 for all j ∈ W

l

k ,

wu
j ≥ 0 for all j ∈ W u

k , and wu
j = 0 for all j ∈ W

u

k ,

(13)

where Jk := {1, . . . , me} ∪ {j : gj(xk+1, yk+1) ≤ 0, j = me + 1, . . . , m} denotes the index set of
active constraints and Jk := {1, . . . , m} \ Jk its complement. The other multipliers are related
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to active bounds of variables with vl = (vl1, . . . , v
l
nc
)T , vu = (vu1 , . . . , v

u
nc
)T , wl = (wl

1, . . . , w
l
ni
)T ,

and wu = (wu
1 , . . . , w

u
ni
)T . The set V l

k is defined by V l
k := {j ∈ {1, . . . , nc} : xj = xl

j} with

complement V
l

k := {1, . . . , nc} \ V l
k . The other sets are defined accordingly.

All index sets may change from one iteration to the next. We denote the solution of (13)
by uk ∈ IRm, vlk, v

u
k ∈ IRnc, and wl

k, w
u
k ∈ IRni. These multiplier approximations are then

used to compute gradients of the Lagrange function (5). Together with the difference vectors
(xk+1, yk+1) − (xk, yk) and corresponding differences of gradients of the Lagrange function, we
are able to update Ck by the BFGS-formula leading to Ck+1. The inner product of one of the
two denominators is modified to guarantee positive definite matrices. Lagrange multipliers are
calculated by (13) to ensure their independence from the branch-and-cut strategy for solving
MIQP subproblems of the form (11). Otherwise, it might happen that multipliers of active
artificial bounds introduced by the selected branching strategy influence the multipliers subject
to the linear constraints of (9).

In the continuous case, a drawback of using the L∞-penalty function is the Maratos [41]
effect, see Fukushima [26] or Yuan and Sun [59], that prevents superlinear convergence even
arbitrarily close to a stationary point under certain circumstances. To overcome this difficulty,
a second order correction (SOC) is proposed by Fletcher [23] and Yuan [58] by solving an
additional quadratic programming problem in certain situations. However, we apply the SOC
step for the continuous variables only. Integer variables are fixed, i.e., are set to dik obtained
by (11), and we obtain

minimize
dc∈IRnc

∇f(xk, yk)
T

(
dk +

(
dc

0

))
+ 1

2

(
dk +

(
dc

0

))T

Ck

(
dk +

(
dc

0

))

+σk

∥∥∥∥∥
(
g((xk, yk) + dk) +∇g(xk, yk)

T

(
dc

0

))−∥∥∥∥∥
∞

subject to ‖dck + dc‖∞ ≤ Δc
k ,

xk + dck + dc ∈ X ,

(14)

where dk = (dck, d
i
k) is the solution of (11). The non-smooth problem (14) can also be rewritten

as a smooth quadratic programming problem in standard form similar to (11). Let d̂k := (d̂ck, 0)
denote its optimal solution.

To prevent a change in the notation, we use in the sequel ∇yf(x, y) or ∇yg(x, y) either for
exact analytical gradients and Jacobians, if available, or alternatively for numerical approxi-
mations computed by the subsequent algorithm. The data returned, are descent directions
evaluated at grid points. For the sake of completeness, we state the detailed calculations in
Procedure 2.1.

We would like to highlight that additional function evaluations for gradient approximations
are not wasted. We keep track of the best feasible point subject to a tolerance ε > 0 that
has been evaluated. We may return to this neighboring grid point whenever it seems to be
profitable. Thus, Procedure 2.1 can be interpreted as a direct neighborhood search. It returns
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the best feasible neighbor of (xk, yk), if one exists, which is denoted by (xbn, ybn) and f bn,
respectively. We omit the iteration index k to improve readability.

Procedure 2.1. Given x ∈ X, y ∈ Y , f(x, y) and g(x, y). Let ε > 0 be a small tolerance and
f bn := ∞, (xbn, ybn) = (x, y).
Output: Approximations to ∇yf(x, y), ∇yg(x, y), f

bn and (xbn, ybn).

begin

for i = 1 to ni do

z+1 := (x, y1, . . . , yi + 1, . . . , yni
) and z−1 := (x, y1, . . . , yi − 1, . . . , yni

).

if yli < yi < yui then

Evaluate f(z+1), g(z+1) and f(z−1), g(z−1).

if ‖g(z+1)−‖∞ ≤ ε and f(z+1) < f bn then f bn := f(z+1) and (xbn, ybn) := z+1.

if ‖g(z−1)−‖∞ ≤ ε and f(z−1) < f bn then f bn := f(z−1) and (xbn, ybn) := z−1.

Set
∂f(x, y)

∂yi
:=

1

2
(f(z+1)− f(z−1)).

for j = 1 to m do Set
∂gj(x, y)

∂yi
:=

1

2
(gj(z

+1)− gj(z
−1)).

else if yi = yli then

Evaluate f(z+1) and g(z+1).

if ‖g(z+1)−‖∞ ≤ ε and f(z+1) < f bn then f bn := f(z+1) and (xbn, ybn) := z+1.

Set
∂f(x, y)

∂yi
:= f(z+1)− f(x, y).

for j = 1 to m do Set
∂gj(x, y)

∂yi
:= gj(z

+1)− gj(x, y).

else if yi = yui then

Evaluate f(z−1) and g(z−1).

if ‖g(z−1)−‖∞ ≤ ε and f(z−1) < f bn then f bn := f(z−1) and (xbn, ybn) := z−1.

Set
∂f(x, y)

∂yi
:= f(x, y)− f(z−1).

for j = 1 to m do Set
∂gj(x, y)

∂yi
:= gj(x, y)− gj(z

−1).

end if
end do

end

We now state the mixed-integer sequential quadratic programming algorithm with trust
region stabilization which is an extension of Yuan’s [58] trust region method.

Algorithm 2.1. Let Δc
0 > 0, Δi

0 ≥ 1, σ0 > 0, σ̄ > 0, and ε > 0 be given constants, choose
starting values x0 ∈ X, y0 ∈ Y and a positive definite matrix C0 ∈ IR(nc+ni)×(nc+ni). Let
f ∗ := ∞, (x∗, y∗) = (x0, y0) be the current best known solution. Evaluate function and partial
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derivative values f(x0, y0), g(x0, y0), ∇xf(x0, y0) and ∇xg(x0, y0) with respect to the continuous
variables. Set k := 0.

1. Approximate ∇yf(xk, yk) and ∇yg(xk, yk) with respect to integer variables using Proce-
dure 2.1 and obtain (xbn

k , ybnk ) and f bn
k .

if ‖g(xbn
k , ybnk )−‖∞ ≤ ε and f(xbn

k , ybnk ) < f ∗ then update f ∗ := f(xbn
k , ybnk ) and

(x∗, y∗) := (xbn
k , ybnk ).

2. Solve the mixed-integer quadratic programming problem (11) to get dk = (dck, d
i
k)

T .

if Φk(0)− Φk(dk) ≤ ε and (‖g(xk, yk)
−‖∞ ≤ ε or σk > σ̄), then goto Step 10.

3. if ‖g(xk, yk)
−‖∞ − ‖(g(xk, yk) +∇g(xk, yk)

Tdk)
−‖∞ < ε

and ‖(g(xk, yk) +∇g(xk, yk)
Tdk)

−‖∞ > ε then σk+1 := 10σk

else σk+1 := σk .

if Φk(0)− Φk(dk) < σk min[Δc
k, ‖g(xk, yk)

−‖∞] then σk+1 := 2σk+1.

4. Evaluate new function values f(xk + dck, yk + dik), gj(xk + dck, yk + dik), j = 1, . . . , m, and
compute the ratio of the actual and the predicted improvements

rk :=
Pσk+1

(xk, yk)− Pσk+1
(xk + dck, yk + dik)

Φk(0)− Φk(dk)
. (15)

5. if rk ≤ 0.75 then solve the SOC problem (14) to obtain a solution d̂k = (d̂ck, 0)
T and

evaluate new function values

f(xk + dck + d̂ck, yk + dik) , gj(xk + dck + d̂ck, yk + dik), j = 1, . . . , m.

if Pσk+1
(xk + dck + d̂ck, yk + dik) < Pσk+1

(xk + dck, yk + dik) then update rk by

rk :=
Pσk+1

(xk, yk)− Pσk+1
(xk + dck + d̂ck, yk + dik)

Φk(0)− Φk(dk)
(16)

and replace dk by dk + d̂k.

6. Update trust region radii by

Δc
k+1 :=

⎧⎪⎨
⎪⎩

min[‖dk‖∞/2 , Δc
k] , if 0.25 > rk ,

Δc
k , if 0.25 ≤ rk ≤ 0.75 ,

max[2‖dk‖∞ , Δc
k] , if 0.75 < rk ,

(17)

and

Δi
k+1 :=

⎧⎪⎨
⎪⎩


‖dik‖∞/2� , if 0.25 > rk ,

Δi
k , if 0.25 ≤ rk ≤ 0.75 ,

max[2‖dik‖∞ , Δi
k, 1] , if 0.75 < rk .

(18)
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7. if rk ≤ 0, then set (xk+1, yk+1) := (xk, yk), Ck+1 := Ck, k := k + 1, and goto Step 2
else set (xk+1, yk+1) := (xk, yk) + dk.

8. Evaluate ∇xf(xk+1, yk+1) and ∇xg(xk+1, yk+1) with respect to continuous variables.
Approximate ∇yf(xk+1, yk+1) and ∇yg(xk+1, yk+1) with respect to integer variables using
Procedure 2.1 and obtain (xbn

k+1, y
bn
k+1) and f bn

k+1.

if ‖g(xbn
k+1, y

bn
k+1)

−‖∞ ≤ ε and f(xbn
k+1, y

bn
k+1) < f ∗ then update f ∗ := f(xbn

k+1, y
bn
k+1) and

(x∗, y∗) := (xbn
k+1, y

bn
k+1).

9. Solve the bound-constrained least squares problem (13) to get multiplier approximations
uk ∈ IRm, vlk, v

u
k ∈ IRnc, and wl

k, w
u
k ∈ IRni. Generate Ck+1 by the BFGS update formula,

let k := k + 1, and goto Step 2.

10. if ‖g(xk, yk)
−‖∞ ≤ ε and f ∗ ≥ f(xk, yk) then set f ∗ := f(xk, yk), (x

∗, y∗) := (xk, yk),
return the best solution f ∗ and (x∗, y∗) and stop.
if ‖g(xk, yk)

−‖∞ > ε and f � = ∞ then report that the problem might be infeasible and
stop.
otherwise set (xk+1, yk+1) := (x∗, y∗), evaluate function values f(xk+1, yk+1), g(xk+1, yk+1)
and gradients ∇xf(xk+1, yk+1), ∇xg(xk+1, yk+1) for continuous variables. Set k := k+1
and goto Step 1.

Algorithm 2.1 is implemented and the code is called MISQP. However, MISQP contains of
additional heuristics to improve the robustness of the described algorithm. In the remainder of
this section, we describe them in more detail.

In mixed-integer nonlinear programming, we do not know local optimality conditions com-
parable to the KKT conditions in continuous optimization. Convexity of the mixed-integer
program (1) is not assumed, and we stop the algorithm as soon as sufficient reduction of the
merit function (10) is no longer possible.

Note that in Step 2 the penalty parameter σk might grow arbitrarily large, in particular if
the underlying mixed-integer program is infeasible. If σk is greater than a threshold σ̄ and the
predicted reduction of the merit function is small, the algorithm is supposed to terminate at
an infeasible stationary point, see Yuan [58]. The parameter σ̄ should be set to a sufficiently
large value, e.g., 1020.

In Step 6, the trust region update for the continuous trust-region radius Δc
k uses the norm of

the complete step dk including the integer part, see (17), to guarantee that Δc
k > 0. Expression


‖dik‖∞/2� in (18) denotes the largest integer value smaller than ‖dik‖∞/2. Thus, the trust-
region radius Δi

k is integer for all k.
Procedure 2.1 in Step 1 and Step 8 is not executed if exact gradients for integer variables

are provided or are approximated externally. The corresponding changes of Algorithm 2.1 are
straightforward. f � remains unchanged and restarts are not performed in Step 10.

We allow a non-monotone decrease of penalty function values Pσk
(xk, yk). The idea of

accepting new iterates which eventually increase the penalty function, is investigated in the
context of trust region algorithms by several authors, see, e.g., Toint [55], Chen et al. [13], and
Deng et al. [15]. We choose an integer constant M > 0 and compare an actual penalty function
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value always with the highest one obtained during the previous M successful iterations. We
call an iteration k a successful iteration, if dk is used to update an iterate, i.e., if (xk+1, yk+1) =
(xk, yk) + dk. Let Kk be the set of iterates that correspond to the last M successful iterations.
Whenever (xk+1, yk+1) = (xk, yk) + dk, the iterate (xk+1, yk+1) substitutes the element with the
lowest iteration index in set Kk+1. The alternative formulation of Step 4 is

4. Evaluate new function values f(xk + dck, yk + dik), gj(xk + dck, yk + dik), j = 1, . . . , m, and
compute the quotient of the actual and the predicted improvements

rk :=
Pσk+1

(xlk , ylk)− Pσk+1
(xk + dck, yk + dik)

Φk(0)− Φk(dk)
, (19)

where Pσk+1
(xlk , ylk) := max

(x,y) ∈ Kk

Pσk+1
(x, y).

Although we introduce this non-monotone reduction condition on the penalty function, we
still apply the SOC steps in Step 5. Our numerical tests indicate that this strategy improves
efficiency in some situations. Moreover, we retain superlinear convergence when applying the
mixed-integer algorithm to solve continuous problems.

The standard procedure for updating Ck is a modified BFGS update formula, as outlined
above, which guarantees positive definite matrices. However, we modify Ck if the conditions of
Step 2 are satisfied and if Step 10 is reached, to get

‖Ck‖∞ ≤ 1

nc + ni
‖∇f(xk, yk)‖∞ . (20)

All entries in Ck are scaled by the same value. The scaling strategy is also motivated by the
fact that large values in Ck result in void integer steps. Numerical tests show that this heuristic
scaling strategy (20) improves the robustness of the algorithm significantly.

Numerical tests indicate that restarts are highly profitable. If the termination criterion in
Step 10 is fulfilled, the relaxed quadratic program (11) is solved subject to a continuous vector
d̃ik ∈ IRni. The integer variable values of the solution d̃k = (d̃ck, d̃

i
k) are rounded to get d̃ik ∈ Z

ni

and we restart Algorithm 2.1 from the obtained new iterate.
Finally, we apply different trust region norms for the integer variables. For binary variables,

an L1 norm is applied and the trust region constraint is reformulated by one linear inequality
constraint. The aim is to obtain more freedom in restricting the search step in the binary space.
The update rules of the trust region parameters are the same for both types of variables.

3 A Linear Outer Approximation Algorithm Combined

with SQP and Trust Region Stabilization

In this section, we introduce two algorithms combining linear outer approximations and the
SQP-type mixed-integer nonlinear programming algorithm described in the previous section.
To motivate our method, we briefly present the theoretical background of the method of linear
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outer approximation described by Fletcher and Leyffer [24] and Duran and Grossmann [17],
see also Quesada and Grossmann [44] for an alternative approach.

To simplify the notation and the analysis of this section, we assume that there are no
equality constraints, i.e., me = 0. The mixed-integer nonlinear program (1) is then written in
the form

minimize
x∈X, y∈Y

f(x, y)

subject to g(x, y) ≥ 0 ,
(21)

where the corresponding continuous relaxation is

minimize
x∈X, y∈YIR

f(x, y)

subject to g(x, y) ≥ 0 .
(22)

For a given y ∈ Y , we denote the nonlinear program

minimize
x∈X

f(x, y)

subject to g(x, y) ≥ 0 ,
(23)

by NLP(y) and its solution by x(y).
In the following, we denote the set of integer values leading to feasible nonlinear subproblems

by
T := {y ∈ Y : NLP(y) feasible } . (24)

Analogously, we denote the set of integer values y leading to infeasible subproblems by

S := {y ∈ Y : NLP(y) infeasible } . (25)

Note that Y = T ∪ S.
Consider now y ∈ S. Let J(y) be the set of all indices from {1, . . . , m} such that there

exists an x ∈ X with gj(x, y) ≥ 0 for all j ∈ J(y). With J⊥(y) := {1, ..., m}\J(y), we obtain a
feasibility problem F(y) for any fixed y ∈ Y ,

minimize
x∈X

−
∑

j∈J⊥(y)

wjgj(x, y)
−

subject to gj(x, y) ≥ 0, j ∈ J(y) ,

(26)

where wj are appropriate nonnegative weights, which are not simultaneously equal to zero and
where gj(x, y)

− is defined by (8). We denote the solution of F(y) by xF (y) for y ∈ S, and
obtain additional constraints of the form

g
(
xF (y), y

)
+∇g

(
xF (y), y

)T (
x− xF (y)
z − y

)
≥ 0, for all y ∈ S , z ∈ Y . (27)

To be able to prove convergence, Fletcher and Leyffer [24] or Duran and Grossmann [17],
e.g., assumed that the relaxed program (22) is convex, i.e., that f(x, y) is convex and that
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g(x, y) is concave over X and YIR. Moreover, the linear independency constraint qualification
(LICQ) is supposed to hold at a solution x(y) of the nonlinear program NLP(y), y ∈ T , and at
a solution xF (y) of the feasibility problem F (y), y ∈ S.

Linear outer approximation algorithms approach a solution of (21) by alternately solving
continuous nonlinear programs NLP(y), see (23), with fixed integer variables y ∈ Y , followed by
a mixed-integer linear program called master program. The idea is to decouple the continuous
nonlinear and the integer optimization parts and to apply efficient nonlinear programming and
linear mixed-integer programming solvers separately. The master program is a linear relaxation
of (21), where the number of linearized constraints grows successively. Since Y is finite, a linear
outer approximation method terminates after finitely many steps. Each solution of a master
program provides a lower bound for (21).

The methods of Fletcher and Leyffer [24] and Duran and Grossmann [17] are based on the
idea that (21) is equivalent to

minimize
y∈T

f(x(y), y) . (28)

After introducing an artificial variable η for minimizing the maximum linearized objective
function value over T , the outer approximation master problem is given in the form

minimize
x∈X, z∈Y, η∈IR

η

subject to f(x(y), y) +∇f(x(y), y)T
(

x− x(y)
z − y

)
≤ η , for all y ∈ T ,

g(x(y), y) +∇g(x(y), y)T
(

x− x(y)
z − y

)
≥ 0 , for all y ∈ T ,

g(xF (y), y) +∇g(xF (y), y)T
(

x− xF (y)
z − y

)
≥ 0 , for all y ∈ S .

(29)

Since the sets S defined by (25) and T defined by (24) are not known a priori, they are
approximated by

Tk := {yi : i ≤ k, NLP(yi) is feasible } ,

Sk := {yj : j ≤ k, NLP(yj) is infeasible }
(30)

in the k-the step of an outer approximation algorithm, by which y0, y1, . . ., yk ∈ Y were
computed. The corresponding relaxed linear master program, where we replace z by y to
simplify the subsequent notation, is

minimize
x∈X, y∈Y, η∈IR

η

subject to f(x(yi), yi) +∇f(x(yi), yi)
T

(
x− x(yi)
y − yi

)
≤ η , for all i ∈ Tk ,

g(x(yi), yi) +∇g(x(yi), yi)
T

(
x− x(yi)
y − yi

)
≥ 0 , for all i ∈ Tk ,

g(x(yj), yj) +∇g(x(yj), yj)
T

(
x− xF (yj)
y − yj

)
≥ 0 , for all j ∈ Sk .

(31)
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The methods of Fletcher and Leyffer [24] and Grossmann [28] require exact partial deriva-
tives with respect to the continuous and integer variables in (31). If exact gradients are not
available and if they have to be approximated numerically, see e.g. (4), the resulting ap-
proximations might not underestimate or overestimate, respectively, objective function and
constraints. Moreover, for non-convex problems linear outer approximations might cut off the
optimal solution and additional safeguards must be attached.

In the remainder of this section, we propose two algorithms, which combine the well-known
linear outer approximation techniques with Algorithm 2.1. Both are applicable also to noncon-
vex mixed-integer programs (21).

Our first approach is to add a linear outer approximation master program (31) to the
trust region algorithm of Section 2. To prevent cycling, we alternate between mixed-integer
nonlinear programming subproblems and continuous nonlinear programs with fixed integer
variables, as done in available linear outer approximation algorithms, i.e., between NLP(y)
or F(y), respectively. Furthermore, we introduce additional constraints cutting off previous
solutions. Note that, if one knew that the given mixed-integer nonlinear program is convex,
one should better apply a linearized objective function cut.

The first step of the modified algorithm is to apply Algorithm 2.1 to solve the mixed-integer
nonlinear program (21), with some additional constraints to prevent cycling,

minimize
x∈X, y∈Y

f(x, y)

subject to g(x, y) ≥ 0 ,

‖y − yl‖22 ≥ 1 , for all 1 ≤ l < k .

(32)

We denote this problem by MINLP(k). In the first iteration with k = 0, Algorithm 2.1 is
applied to the original problem without artificial constraints. If (32) turns out to be infeasible,
as, e.g., measured by too large penalty parameters, the feasibility problem F(yk) is solved.
Subsequently, the master program (31) is set up and the solution of (31) provides a new
starting point for (32) in the next iterate.

The additional constraints

‖y − yl‖22 ≥ 1 , for all 1 ≤ l < k (33)

lead to nonconvex and thus more difficult subproblems. However, numerical tests show that
they improve the overall performance and robustness of the algorithm drastically. The L2-norm
is chosen instead of the L1-norm to get differentiable constraints.

The modified algorithm is summarized as follows.

Algorithm 3.1. Let x0 ∈ X and y0 ∈ Y be given starting values, ε > 0 a termination tolerance,
and R > 1 a cycling rate and σ̄ > 0 an upper bound for the penalty parameter in Algorithm
2.1. Set f ∗ := ∞, (x∗, y∗) := (x0, y0), and k := 0.

1. if k = 0 or if k is a multiple of R, then goto Step 2

else solve NLP(yk), or, if NLP(yk) is infeasible, F(yk) subject to the stopping tolerance
ε. Denote the solution by xk, let yk := yk and goto Step 3.
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2. Solve MINLP(k) (32) by Algorithm 2.1 subject to stopping tolerance ε and denote the
solution by xk and yk.

if MINLP(k) cannot be solved, i.e., stops at an infeasible point, or if σk > σ̄ in Step 4 of
Algorithm 2.1, then solve F(yk) and denote the solution again by xk.

3. Evaluate new function and derivative values, either analytically or by Procedure 2.1, at
(xk, yk).
if ‖g (xk, yk)

− ‖∞ ≤ ε and f (xk, yk) < f ∗, then set f ∗ := f (xk, yk) and (x∗, y∗) :=
(xk, yk).

4. Add new constraints to the linear master program (31) formulated at (xk, yk), and solve
(31). Denote the solution by (xk+1, yk+1, ηk).

if ηk ≥ f ∗ − ε, then stop and return the best solution f ∗ and (x∗, y∗)

else set k := k + 1 and goto Step 1.

Note, that the numerical solution of the mixed-integer nonlinear program (32) requires
substantial additional computational overhead. Thus, R is a constant parameter to reduce
the number of solutions of (32). In Step 1 of Algorithm 3.1, we solve continuous nonlinear
optimization problems with given integer variables. Step 2 offers more freedom in computing
new search steps, since possible changes in continuous and integer variables are simultaneously
taken into account.

An alternative idea is to add linear outer approximations directly to the internal cycle of
the SQP-type Algorithm 2.1. Our goal is to modify the linear outer approximation method
as outlined before, by allowing a subsequent adaption of integer variables also outside of the
master problem (29). First, we define a condition under which a mixed-integer search step
obtained from (11) is acceptable compared to a continuous step d̃ck obtained by solving (12).

Definition 3.1. Denote the mixed-integer solution of the quadratic program (11) at (xk, yk) ∈
X × Y by (dck, d

i
k) ∈ IRnc × Z

ni and let d̃ck ∈ IRnc be the solution of the continuous quadratic
program (12) for a fixed yk. If

Pσk
(xk + dck, yk + dik) < Pσk

(xk + d̃ck, yk) , (34)

holds, then (dck, d
i
k) is an improved mixed-integer search step subject to d̃ck, where Pσk

denotes
the L∞-penalty function (5) with penalty parameter σk.

A change in the integer variables according to Definition 3.1 is considered as an improved
direction, if the search step is more profitable than the continuous step d̃ck with respect to the
L∞-penalty function (5).

To avoid cycling, we record the previous solutions of the master problem (31) and skip
the computation of mixed-integer search-directions, i.e., we do not solve MIQP (11), whenever
cycling is detected. As soon as the master problem yields an unexplored integer value, mixed-
integer search directions are again computed.
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Note that the best current solution f ∗, (x∗, y∗) of the subsequent algorithm is updated,
whenever the conditions

‖g(xk, yk)
−‖∞ ≤ ε (35)

f(xk, yk) < f ∗ (36)

are satisfied for function values evaluated at (xk, yk) subject to a feasibility tolerance ε > 0.

Algorithm 3.2. Let Δc
0 > 0, Δi

0 ≥ 1, σ0 > 0, and ε > 0 be given constants, choose starting
values x0 ∈ X, y0 ∈ Y and a positive definite matrix C0 ∈ IR(nc+ni)×(nc+ni).
Evaluate function values f(x0, y0), g(x0, y0) and derivatives ∇f(x0, y0), ∇g(x0, y0), either ana-
lytically or by Procedure 2.1. Set f ∗ := ∞, (x∗, y∗) = (x0, y0) and k := 0.

1. Solve the continuous quadratic program (12) and denote its solution by d̃ck. Evaluate new
function values f(xk + d̃ck, yk) and gj(xk + d̃ck, yk), j = 1, . . ., m, and update the best
solution values, if conditions (35) and (36) are satisfied. Update the penalty parameter
σk+1 according to Step 3 of Algorithm 2.1 with respect to σk, Δc

k and g(xk + d̃ck, yk),
compute rck according to (15), and update the trust region radius Δc

k+1 by (17).

2. Solve the mixed-integer quadratic program (11) and denote its solution by dck ∈ IRnc and
dik ∈ Z

ni. Evaluate new function values f(xk+dck, yk+dik) and gj(xk+dck, yk+dik), j = 1,
. . ., m. Update the best solution, if (35) and (36) are satisfied. Compute rik according to
(15), and update the trust region radius Δi

k+1 by (18).

3. if (dck, d
i
k) is an improved mixed-integer search direction, then let dk := (dck, d

i
k), rk := rik

else let dk := (d̃ck, 0) and rk := rck.

if xk is a stationary point of NLP(yk) subject to the termination tolerance ε, either feasible
or non-feasible, then goto Step 6.

4. if rk ≤ 0, then set (xk+1, yk+1) := (xk, yk), Ck+1 := Ck, k := k + 1 and goto Step 1

else set (xk+1, yk+1) := (xk, yk) + dk.

5. Evaluate gradients ∇f(xk+1, yk+1) and ∇g(xk+1, yk+1) either analytically or by Proce-
dure 2.1. Solve the bound-constrained least squares problem (13) to get multiplier ap-
proximations. Generate Ck+1 by the BFGS update formula, set k := k + 1 and goto
Step 1.

6. Update the linear master program (31) by adding new constraints subject to (xk, yk) and
denote the solution by (xk+1, yk+1, ηk).

if ηk ≥ f ∗ − ε, then stop and return the best solution f ∗ and (x∗, y∗)

else evaluate new function values f (xk+1, yk+1), gj (xk+1, yk+1) and new gradient values
∇f(xk+1, yk+1), ∇gj(xk+1, yk+1), j = 1, . . ., m, either analytically or by Procedure 2.1
and update best solution, if conditions (35) and (36) are satisfied. Set k := k + 1 and
goto Step 1.
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4 Comparative Numerical Results

4.1 Test Environment

Our codes are part of a modular toolbox, which allows to switch easily from one solver to
another. They are implemented in thread-safe Fortran as close to F77 as possible, to be able
to convert the codes to C directly.

We intend to evaluate the numerical performance of four solvers, some of them executed with
alternative parameter settings, on a set of 100 academic mixed-integer and a set of 55 mixed-
binary test problems provided by our industrial cooperation partner Shell SIEP Rijswijk. In
both cases, we have nonlinear and also nonconvex objective functions and nonconvex feasible
domains, especially also nonlinear equality constraints.

Evaluating statistical comparative scores by mean values for a series of test problems and
different computer codes is often misleading. It might happen that the less reliable codes
do not solve the more complex test problems successfully, but the more advanced ones solve
them with additional numerical efforts, say calculation time or number of function calls. A
direct evaluation of mean values over successful test runs would thus penalize the more reliable
algorithms.

A more realistic possibility is to compute mean values of the criteria we are interested in,
and to compare the codes pairwise over sets of test examples, which are successfully solved
by the two codes. We then get a reciprocal ncode × ncode matrix, where ncode is the number of
codes under consideration. The largest eigenvalue of this matrix is positive and we compute
its normalized eigenvector from where we retrieve priority scores. The idea is known under the
name priority theory, see Saaty [46] or the appendix, and has been used by Schittkowski [48] and
Hock and Schittkowski [33] for comparing 27 optimization codes. In a final step, we normalize
the eigenvectors so that the smallest coefficient gets the value one.

The following codes are implemented based on the algorithms outlined in the previous
sections, and are tested with different parameter settings:

MISQP [20] - Mixed-integer SQP-based trust region method, i.e., Algorithm
2.1, partial derivatives approximated by Procedure 2.1

MISQP/bmod [20] - Same as MISQP, but quasi-Newton updates not scaled in or-
der to satisfy (20)

MISQP/fwd [20] - Same as MISQP, but integer variables treated as relaxable,
i.e., partial derivatives with respect to integer variables com-
puted by difference formulae analogously to the procedure
used for continuous variables
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MISQP/rst0 [20] - Same as MISQP, but no restarts

MISQPOA [36] - Implementation of Algorithm 3.1, i.e., additional stabilization
by outer approximations, successive solution of mixed-integer
nonlinear problems by MISQP. Every 6th subproblem is for-
mulated as a mixed-integer nonlinear program (32).

MISQPN [19] - Implementation of Algorithm 3.2, i.e., by an SQP-based outer
approximation method, successive solution of mixed-integer
quadratic programs extended by linear outer approximation
constraints

MINLPB4 [35] - Branch-and-bound method based on MISQP with branching
subject to integer and binary variables, i.e., generation of a
sequence of nonlinear continuous programs solved by MISQP

For solving continuous quadratic programming problems, we use the code QL of Schitt-
kowski [49], which is based on an implementation of Powell [43]. The underlying primal-dual
method of Goldfarb and Idnani [27] is particularly useful for designing a branch-and-cut al-
gorithm for mixed-integer quadratic programs, e.g., by exploiting dual information for early
branching. The corresponding code is called MIQL, see Lehmann and Schittkowski [34], and is
used in all situations where we have to solve mixed-integer quadratic programs.

Note that all continuous nonlinear programs are solved by MISQP by setting the number of
integer variables to zero. The algorithm then behaves like an SQP algorithm with trust region
stabilization and quasi-Newton updates, see Exler et al. [20] for details.

The quadratic programming code MIQL mentioned above and the nonlinear mixed-integer
programming code MINLPB4 call the branch-and-bound subroutine BFOUR, see Lehmann et
al. [37], where several branching and node selection strategies are implemented.

For executing the above mentioned optimization codes, we apply default parameter settings
and tolerances, see the corresponding user guides for details, with termination tolerance 10−6.
Maximum number of iterations is 2,000, and the number of branch-and-bound nodes is bounded
by 10,000. We backup the last 10 iterations for applying the non-monotone trust region updates.

All test examples are provided with the best objective function value f � we know, either
obtained from analytical solutions, literature, or extensive numerical testing. Derivatives with
respect to continuous variables are always approximated by forward differences subject to a
small tolerance (10−6), whereas integer derivatives are replaced by descent directions, see Pro-
cedure 2.1. For binary variables or for variables at a bound, a forward or backward difference
formula is applied, respectively. Exceptions are the codes MISQP/fwd and MINLPB4. In
both cases the derivatives with respect to the integer variables are approximated by the same
procedure used for the continuous variables.

The Fortran codes are compiled by the Intel Visual Fortran Compiler 10.1 under Windows
7 and executed on an Intel Core(TM)2 i7 64 bit processor with 3.16 GHz and 8 GB RAM.

First we need a criterion to decide whether the result of a test run can be considered as
a successful return or not. Let εt > 0 be a tolerance for defining the relative accuracy, and
(xk, yk) the final iterate of a test run. If f � = 0, as in some of the academic test instances, we
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add the value one to the objective function. We call (xk, yk) a successful solution, if the relative
error in the objective function is less than εt and if the maximum constraint violation is less
than ε2t , i.e., if

f(xk, yk)− f � < εt|f �| (37)

and ‖g(xk, yk)
−‖∞ < ε2t , where g(xk, yk)

− represents the vector of constraint violations. We
take into account that a code returns a solution with a better function value than the best
known one, subject to the error tolerance of the allowed constraint violation. The tolerance
is smaller for measuring the constraint violation than for the error in the objective function,
since we apply a relative measure in the latter case, whereas constraint functions of our test
problems are often badly scaled.

Moreover, we would like to distinguish between feasible, but non-global solutions, successful
solutions as defined above, and false terminations. We call the return of a test run, say xk

and yk, an acceptable solution, if the internal termination conditions are satisfied subject to a
reasonably small tolerance ε = 10−6 and if instead of (37)

f(xk, yk)− f � ≥ εt|f �| (38)

holds. For our numerical tests, we use εt = 0.01.
Note again that our main paradigm is to proceed from non-relaxable integer variables and

corresponding descent directions, which could be considered as a very crude numerical ap-
proximations of partial derivatives by forward differences. To be as close to complex practical
engineering applications as possible, we apply a forward difference formula for approximating
partial derivatives subject to the continuous variables.

We use the subsequent criteria to compare the robustness and efficiency of our codes on two
sets of test problems:

nsucc - number of successful test runs according to above definition,
nacc - number of acceptable, i.e., of non-global feasible solutions, see above

definition,
Δerr - average relative deviation of computed solution from the best known

known one, (f(xk, yk)− f �)/|f �|, taken over all acceptable solutions,
nerr - number of test runs terminated by an error message,
nfunc - average number of equivalent function calls including function calls used

for computing a descent direction or gradient approximations, evaluated
over all successful test runs, where one function call consists of one eval-
uation of the objective function and all constraint functions at a given x
and y,

pfunc - relative priority of equivalent function calls including function calls used
for gradient approximations,

time - average execution times in seconds, evaluated over all successful test runs,
ptime - relative priority of execution times.

For an alternative way to present comparative numerical results, Dolan and Moré [16]
developed performance profiles which are frequently applied in comparative computational
studies. We present them for our main measure, namely the number of equivalent function
calls.
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code nsucc nacc Δerr nerr pfunc nfunc ptime time

MISQP 89 11 0.84 0 1.3 500 3.4 0.39
MISQP/bmod 71 29 3.48 0 1.0 340 1.0 0.20
MISQP/fwd 81 19 0.64 0 1.9 396 4.0 0.11
MISQP/rst0 69 30 0.36 1 1.0 241 2.3 0.14
MISQPOA 91 9 0.31 0 3.1 1,093 10.7 0.65
MISQPN 74 24 1.17 2 4.4 1,139 8.5 0.17
MINLPB4 88 8 1.00 4 51.6 218,881 1.8 4.11

Table 1: Performance Results for a Set of 100 Academic Test Problems

4.2 Academic Test Problems

First, we evaluate the performance of the presented solvers on a test set of 100 academic test
examples published in Schittkowski [50]. Each test problem comes with a function value which
has been found in the literature or which has been obtained by extensive testing over several
years. They are believed to represent the optimal solution, at least we did not find better
results by our test runs. There are at most 23 continuous, 100 integer, and 24 binary variables.
Moreover, there are up to 17 equality constraints and the total number of constraints is at
most 75. 65 test problems are taken from the GAMS MINLPLib, see Bussieck, Drud, and
Meeraus [12].

Table 1 shows numerical results obtained for the mixed-integer trust region method MISQP,
the branch-and-bound solver MINLPB4, and the outer approximation solvers MISQPOA and
MISQPN, see the previous subsection for more details.

In a few cases, the codes are unable to find a feasible solution and an error message is
generated. In a couple of other situations, the codes are unable to improve a current iterate
and report that a feasible solution is obtained, but which is not the global optimum.

Table 1 shows that scaling the quasi-Newton matrix is extremely important to improve
the robustness of our implementation. Otherwise, the number of successfully solved test runs
decreases by almost 20 per cent. The significant reduction of the function calls indicates that the
solver terminates too early. The results of MISQP/rst0 emphasize the importance of internal
restarts. Although the MISQP variant with nearly exact partial derivatives, MISQP/fwd, needs
less function evaluations, it is on the other hand less reliable. There is no evidence to conclude
that the one or the other variant is better.

MISQPOA calls MISQP within an outer approximation framework. Thus, the obtained
solution is at least as good as the one found by MISQP. The added safeguards result in a
higher number of function evaluations, but more problems can be solved successfully.

The new outer approximation algorithm implemented under the name MISQPN, is still an
experimental implementation and less reliable than any of the other codes. The average number
of function calls of MISQPN is more than twice higher than that of MISQP, and the priority
level indicates that nfunc is even about four times higher when compared over the set of test
runs which terminated successfully for both codes. One possible explanation is the effect of
a heuristic scaling of the BFGS updates which is not implemented for MISQPN. Thus, one
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Figure 1: Performance Profiles for Academic Test Problems

should better compare MISQPN to MISQP/bmod. Both codes solve almost the same number
of test problems, but MISQP/bmod requires less function evaluations.

As expected, the branch-and-bound solver MINLPB4 is much less efficient than the other
solvers, since a large number of continuous nonlinear optimization problems must be solved. To
prevent exhaustive computation times, MINLPB4 is provided with the information that all test
problems are supposed to be convex. Thus, the number of successful test runs is comparable to
those of MISQP indicating again that at least ten test problems of our collection are nonconvex.

Performance profiles for the number of function evaluations, nfunc, are presented in Figure 1.
For each solver the profile shows the percentage of test problems the code solved successfully
without exceeding an upper bound on the number of function evaluations. The upper bound
is a multiple of the number of function calls the best solver on an instance needed. The
factor is given along the abscissa. For example, MISQP solves 80% of the problems with at
most four times the number of function evaluations compared to the best solvers. According
to the performance profiles MISQP/rst0 is the most efficient solver. In 45% of the problems
MISQP/rst0 needs the fewest number of function evaluations to solve the problem. MISQP/fwd
and MISQP/bmod follow. If all heuristics are activated then MISQP becomes more robust.
The performance profiles can be interpreted similarly to the results presented in Table 1.

4.3 Test Problems from Petroleum Engineering

A large variety of applications of mixed-integer nonlinear programming is found in the petroleum
industry. We select two classes of problems known as well relinking and gas lift problems for our
numerical tests, which differ by their dimensions and data and which are collected in another
set of 55 test examples. The case studies have been provided by Shell SIEP Rijswijk together
with optimal solutions found by extensive numerical tests with global optimization solvers.
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These applications are based on complex simulators, but simplified algebraic description are
provided reproducing typical problem characteristics.

To give a typical example, we introduce a simple well relinking model, where the total flow
in a given network is to be maximized. The network consists of a number of source nodes and
some sink nodes. The flow from each source node is to be directed to exactly one sink node,
and the total capacity at the sinks is limited in terms of pressure and flow. A source node has
a special pressure-flow characteristic and the total flow within the network is bounded.

Let us assume that there are ms sinks and ns sources, and that we want to maximize the
total flow

ns∑
i=1

xi

under so-called split-factor constraints, i.e., a set of switching conditions for each source i, i = 1,
. . ., ns, of the form

ms∑
j=1

yij = 1 .

Moreover, we have pressure constraints at source i, i = 1, . . . , ns,

ms∑
j=1

cijy
i
j ≤ ai − bixi ,

and upper bounds Qj for mass rates at the sinks, j = 1, . . ., ms,

ns∑
i=1

xiy
i
j ≤ Qj ,

with appropriate positive constants cij , Qj , j = 1, . . ., j = ms, and ai, bi, i = 1, . . ., ns. The
well relinking test examples are defined by their dimensions ms = 3 and ns = 3, ns = 6, or
ns = 9, and the constants mentioned above.

It would be possible to replace the bilinear mass rate constraints by linear ones or to apply a
perspective reformulation of Günlük and Linderoth [31] to strengthen the relaxation. However,
we do not want to apply any simplifying transformation and prefer the nonlinear formulation
as it stands for our numerical tests. Note that the true real-life model is much more complex
by taking different topologies, compressors, or any other technical systems into account. The
mass rate and pressure constraints are based on computationally intensive simulations.

In a very similar way, some gas lift test problems are created, see Ray and Sarker [45]
or Ayatollahi et al. [3] for related models. We finally get a set of 55 test problems, where
the number of continuous variables varies between 3 and 10, the number of binary variables
between 9 and 27, the number of linear equality constraints between 0 and 9, and the number
of inequality constraints between 1 and 21. Table 2 contains performance results for the solvers
under consideration.

The code MISQP is, in any of the four different versions tested, by far the most efficient one
in terms of number of function evaluations. Even if an optimal solution is not reached, MISQP
stops at least at an acceptable solution.
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code nsucc nacc Δerr nerr pfunc nfunc ptime time

MISQP 50 5 0.041 0 2.7 1,964 3.6 0.91
MISQP/bmod 49 6 0.044 0 2.0 1,430 2.0 0.50
MISQP/fwd 45 10 0.041 0 2.8 1,901 3.5 0.88
MISQP/rst0 37 17 0.104 1 1.0 630 1.0 0.14
MISQPOA 52 3 0.033 0 23.5 17,786 31.5 7.78
MISQPN 33 9 0.087 13 10.4 5,331 11.6 1.29
MINLPB4 55 0 0.0 0 204.2 154,898 2.0 0.45

Table 2: Performance Results for a Set of 55 Well Relinking and Gas Lift Test Problems
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Figure 2: Performance Profiles for Petroleum Engineering Problems
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The additional stabilizations of MISQPOA by linear outer approximations require a signifi-
cant amount of additional iterations and, consequently, a much larger number of function calls.
The code is an upgrade of MISQP in the sense that proceeding from an initial optimal solution
of MISQP, linear outer approximation constraints are added successively.

The idea behind the code MISQPN is similar. We get less acceptable solutions compared
to MISQP, but, however, a couple of false terminations, which are in some cases very close to a
solution. Also the number of function evaluations is significantly larger than those of MISQP.
We have to note again that MISQPN is still an experimental implementation without all the
additional heuristics developed for MISQP.

The branch-and-bound code MINLPB4 solves all test problems, but requires about 100
times as many function calls as MISQP.

Performance profiles are shown in Figure 2, where the performance ratio of nfunc is displayed
over those logarithmic numbers, for which the performance ratio is below the displayed number,
see also Figure 1 and the corresponding comments.

5 Conclusions

It is well known that nonconvex nonlinear mixed-integer optimization problems are extremely
difficult to solve. In general, even simple concepts like local solutions or convexity of functions
are not available, especially if appropriate relaxations do not exist, i.e., continuous represen-
tations of model functions where integer variables can be treated as continuous. In highly
complex technical simulation codes especially for engineering applications, however, it is often
not possible to evaluate an objective or constraint function value for fractional values of an
integer variable. In this situation, most of the known optimization algorithms fail to find a
solution or cannot even be applied. Thus, the complexity of an optimization problem depends
heavily on the structure of integer variables.

We conclude from our numerical results that SQP-based algorithms provide an efficient way
to solve nonlinear mixed-integer programs, if the main performance criterion is the number
of function evaluations. Since convex mixed-integer quadratic programming problems must
be solved successively, the total computational effort, e.g., calculation times, might become
costly. We recommend our approach also in situations, where function evaluations are extremely
expensive. The limitations of our approach are that integer variables must have an internal
smooth structure, i.e., do not behave like categorical variables, and that the total number of
variables is not too large.

We investigate the possibility to extend our mixed-integer SQP-type algorithm by adding
a mixed-integer linear master program with linear outer approximation constraints, by which
the SQP-type method is stabilized. The safeguards require a significant amount of additional
function calls.

On the other hand, it is possible to apply the outer approximation idea directly to the mixed-
integer SQP methods mentioned above, by combining the master program and the continuous
solver for fixed integer variables. Drawback in this case is a larger number of feasible, but non-
optimal solutions and more terminations in error situations. The corresponding code MISQPN
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is still a preliminary implementation and we will investigate its mathematical background in
the future.

Our experience is based on numerical tests obtained by a set of 100 academic examples
and 55 examples with some background in petroleum engineering. All objective and constraint
functions consist of analytical expressions, and all integer variables are relaxable. However, this
information is only exploited for testing certain variants of our codes, especially when we need
partial derivative values with respect to integer variables. Our main motivation is to provide
software in form of a toolbox for complex practical applications, where integer variables are
not required to be relaxable and where function evaluations are costly. Since we assume that
partial derivatives with respect to integer variables are not explicitly available, we replace them
by descent directions computed by two-sided differences at neighbored grid points. Surprisingly
enough, these crude approximations work extremely well in our numerical tests.

We suppose that a ’black box’ simulation code provides the function values, i.e., that we do
not need to know anything about the internal structure of variables or constraints. But if some
structures are known in advance, as, e.g., special linear constraints based on special ordered set
(SOS) variables, we have a very simple way to handle them. Since constraints are linearized,
they are passed directly to the underlying MIQP. Due to the modular structure, our own MIQP
solver is easily exchanged by another one which, after passing the structural information, takes
them into account.

Despite of using inaccurate approximations of partial derivatives with respect to integer
variables, our solvers efficiently compute feasible solutions for most test problems. Objective
function values are often close to the best known optimal solutions.
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code TP1 TP2 TP3 TP4 TP5 mean
C1 * 5.2 1.3 4.0 7.0 4.4
C2 0.3 * 1.5 * 8.2 3.3
C3 3.0 11.2 * * 12.2 8.8

Table 3: Some Fictitious Calculation Times for 5 Test Problems and 3 Codes

APPENDIX: Priority Theory

To explain possible irregularities when evaluating statistical comparative scores, let us con-
sider a simple example. Suppose we want to evaluate one performance criterium, e.g., calcula-
tion time, for comparing three optimization codes, say C1, C2, C3, on five test problems, TP1,
. . ., TP5. The results of the test runs might be given by the data of Table 3. A ” ∗ ” indicates
that the code could not solve the corresponding test problem successfully.

The mean values of calculation times are taken over all successful test runs. We get the
impression that C2 is somewhat faster than C1, but the calculation times for test problems
successively solved by both codes, are the other way round. On the other hand, the mean value
for C3 is twice as larger than the one for C1 and a bit more than the one for C2.

We have to expect that in particular the higher dimensional, time-consuming test problems
could not be solved successfully by all programs. To avoid the difficulties as outlined in the
above example, we exploit the priority theory of Saaty [46], which was used by Lootsma [40]
for comparing optimization software.

Now we assume that we want to compare N codes Ci, i = 1, . . ., N , on a set of M test
problems TPj, j = 1, . . ., M . Let Si denote the set of test problems that could be solved
successfully by code Ci, i = 1, . . ., N , i.e.,

Si := {j : TPj could be solved successfully by Ci, 1 ≤ j ≤ M} . (39)

Priority theory is based on a pairwise comparison of the N programs with respect to the
performance criterium under consideration, e.g., calculation time. Let tij be the performance
result obtained by code Ci on test problem TPj , tij > 0. Then we use the expressions

rik :=

∑
j∈Si∩Sk

tij

∑
j∈Si∩Sk

tkj
(40)

for i = 1, . . ., N and k = 1, . . ., N , to define a reciprocal matrix

R := (rik)i,k=1,N , (41)

where the elements of R satisfy the condition

rik = r−1
ki > 0 . (42)
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Matrix R is to be considered as an approximation of the matrix

P :=

(
wi

wk

)
i,k=1,N

, (43)

where the entries w1, . . ., wN are the true mean values of the stochastic variables we are
considering, say expectation value of execution time for code Ci. To simplify the subsequent
analysis, we assume that

N∑
i=1

wi = 1

and let w := (w1, . . . wN)
T . Then P is a rank-one matrix with

Pw = Nw , (44)

i.e., N is the only positive eigenvalue of P and w is the uniquely determined normalized eigen-
vector with positive elements.

On the other hand, we can apply a theorem of Perron-Frobenius, see Bellman [4] for example,
which states that the largest eigenvalue of R, which is considered as an approximation of P , is
real and positive, and that there is a uniquely determined eigenvector with positive elements.

To sum up, the performance evaluation consists of establishing the matrix R, see (40) and
(41), and of computing the maximum eigenvalue of R with positive eigenvector w, which is
considered as a suitable approximation of w, see (44). The entries of the eigenvector are scaled
so that the smallest coefficient becomes the value one.

To give an example, consider the data of Table 3. Then

R =

⎛
⎝ 1.0 0.86 0.52

1.17 1.0 0.56
1.92 1.79 1.0

⎞
⎠

and the eigenvector corresponding to the largest eigenvalue of R is

w = (1.0, 1.1, 2.0)T .

These scores can be used to estimate the performance criterium which is to be evaluated. We
observe that C1 is slightly faster than C2, as can be retrieved from Table 3. On the other hand,
C3 is about two times slower than C1 and, approximately also twice slower than C2. Whereas
the first conclusion cannot be retrieved from the mean values, that last one corresponds quite
exactly with the mean values, see Table 3.
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