
Data Fitting in Partial Differential Algebraic

Equations: Some Academic and Industrial

Applications

K. Schittkowski

Department of Mathematics, University of Bayreuth, D - 95440 Bayreuth,
Germany

Abstract

The paper introduces a numerical method to estimate parameters in systems of one-
dimensional partial differential algebraic equations. Proceeding from given experi-
mental data, i.e., observation times and measurements, the minimum least squares
distance of measured data from a fitting criterion is computed, which depends on
the solution of the dynamical system. We present a typical black box approach that
is easily implemented proceeding from some standard numerical analysis tools. Main
emphasis of the paper is to present a couple of practical applications from indus-
try and academia, to give an impression on the complexity of real life systems of
partial differential equations. The domains of application are pharmaceutics, geol-
ogy, mechanical engineering, chemical engineering, food engineering, and electrical
engineering.
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1 Introduction

Parameter estimation or data fitting, respectively, is applied in practical sit-
uations, where a mathematical model is available to simulate and predict the
dynamical structure of the system. The idea is compute unknown model pa-
rameters by minimizing the distance of a fitting function from experimentally
observed data.

In this paper, we consider one-dimensional partial differential algebraic equa-
tions (PDAE) with optional flux functions, coupled ordinary differential al-
gebraic equations, arbitrary fitting criteria, disjoint spatial integration areas,
switching times, and dynamical constraints. Despite of the restriction that only
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one-dimensional spatial variables are considered, the mathematical model is
fairly general and broad from the practical point of view. But even if the un-
derlying mathematical formulation requires a two- or three-dimensional simu-
lation, it is often reasonable to estimate first some unknown model parameters
by a least squares fit for a simplified one-dimensional variant.

The underlying data fitting problem is of the form

min
l∑

i=1

fi(p)
2

gj(p) = 0 , j = 1, ...,me ,

p ∈ Rn : gj(p) ≥ 0 , j = me + 1, ...,m ,

pl ≤ p ≤ pu .

(1)

We assume that the parameter vector p is n-dimensional and that all non-
linear functions are continuously differentiable with respect to p. Upper and
lower bounds are treated independently from the remaining constraints. The
assumption that all problem functions must be smooth is essential. All efficient
numerical algorithms are based more or less on the Gauss-Newton method and
require first derivatives. The fitting criteria fi(p) are supposed to depend also
on the solution of a system of one-dimensional partial differential equations.

The main emphasis of the paper is to introduce a couple of real life case studies
to get an impression on the complexity of practically relevant mathematical
models. The considered applications are

• transdermal application of drugs,
• groundwater flow,
• cooling of a hot strip mill,
• drying maltodextrin in a convection oven,
• acetylene reactor,
• fluid dynamics of hydro systems,
• MCFC fuel cells,
• horn radiators for satellite communication.

The dynamical equations are outlined and numerical simulation results for a
typical case study are presented. Besides the last one, all models are imple-
mented in a special modeling language called PCOMP, which allows auto-
matic differentiation of nonlinear functions, see Dobmann et al. [18] or Liepelt
and Schittkowski [42]. The corresponding codes are available as part of the
test problem collection of the data fitting program EASY-FIT, see Schitt-
kowski [54,55] and numerical test runs can be repeated.

The data fitting model, alternative phrases are parameter estimation, non-
linear regression, or system identification, is outlined in Section 2. Possible
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extensions of the general formulation are discussed to cover a broad domain of
possible applications, for example flux functions, coupled ordinary differential
algebraic equations, arbitrary fitting criteria, disjoint spatial integration areas,
switching times, and dynamical constraints. Section 3 contains a brief sum-
mary of the numerical procedures that are involved to discretize the partial
differential equations by the method of lines, to integrate the resulting sys-
tem of ordinary differential algebraic equations, and to solve the constrained
least squares problem efficiently. Only some basic features of the underlying
ideas are presented. More details are found in the references and especially
in Schittkowski [55]. The real life case studies are listed in Section 4, i.e., the
mathematical equations and fitting criteria as detailed as possible, together
with some numerical results.

2 The Dynamical Model

We proceed from r experimental data sets (ti, y
k
i ), i = 1, . . . , lt, k = 1, . . . ,

r, where lt time values and l = ltr corresponding measurement values are
defined. Then the objective function to be minimized is

r∑
k=1

lt∑
i=1

(wk
i (hk(p, ti)− yki ))2 . (2)

The fitting criteria hk(p, t) depend now on so-called state variables, i.e., the
solution of an implicitly defined system of dynamic equations.

In its simplest form, a time-dependent one-dimensional system of np partial
differential equations is given by

ut = F (p, u, ux, uxx, x, t) , (3)

where u = (u1, . . . , unp)
T are the state variables. We denote the solution of

(3) by u(p, x, t), since it depends on the time value t, the space value x, and
the actual parameter value p.

Flux functions are useful in two situations. First, they facilitate the declaration
of highly complex model functions given by flux formulations. In these cases,
it is often difficult or impossible to get the spatial derivatives in analytical
form, and one possibility is to apply a first-order discretization scheme to the
entire flux function. Another reason for using flux functions is to design special
upwind formulae in case of hyperbolic partial differential equations, when
usual approximation schemes break down. A typical reason is the propagation
of shocks over the integration interval, enforced by non-continuous initial and
boundary conditions. In many situations, advection or transport equations of
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the form

ut + fx(p, u) = g(p, u, ux, uxx, x, t) (4)

are considered with an additional source term on the right-hand side.

Now we permit additional algebraic equations as in the case of ordinary dif-
ferential algebraic equations, and get the dynamic system

∂ud
∂t

= Fd(p, u, ux, uxx, x, t) ,

0 = Fa(p, u, ux, uxx, x, t) ,
(5)

where x ∈ IR is the spatial variable with xL ≤ x ≤ xR, and 0 < t ≤ T . But now
the state variables are divided into nd differential ud = (u1, . . . , und

)T and na

algebraic variables ua = (und+1, . . . , und+na)
T , where the number of algebraic

variables is identical to the number of algebraic equations summarized by the
vector Fa.

Initial values and boundary conditions may depend on the parameter vector
to be estimated. Since the starting time is assumed to be zero, initial values
have the form u(p, x, 0) = u0(p, x) and are defined for all x ∈ [xL, xR]. For
both end points xL and xR we allow Dirichlet or Neumann boundary values

u(p, xL, t) = uL(p, t) , u(p, xR, t) = uR(p, t) ,

ux(p, xL, t) = ûL(p, t) , ux(p, xR, t) = ûR(p, t)
(6)

for 0 < t ≤ T , where T is the final integration time, for example the last
experimental time value tlt . The availability of all boundary functions is of
course not required. Their particular choice depends on the structure of the
PDE model, for example whether second partial derivatives exist on the right-
hand side or not.

In case of algebraic equations, we must treat initial and boundary conditions
with more care. We have to guarantee that at least existing boundary con-
ditions satisfy the algebraic equations. If initial values u0(p, x) violate the
algebraic equations after inserting corresponding approximations for spatial
derivatives, it is tried to solve the corresponding system of nonlinear equa-
tions numerically. Thus, we have to assume that the resulting DAE is an
index-1-system unless it is guaranteed that consistent initial values for the
discretized DAE are available, see for example Caracotsios and Stewart [8] for
a similar approach.

To indicate that the fitting criteria hk(p, t) depend on the solution of the
dynamical equation, where k denotes the index of a measurement set, we use

4



the notation

hk(p, t) = hk(p, u(p, xk, t), ux(p, xk, t), uxx(p, xk, t), t) . (7)

Each set of experimental data is assigned a spatial variable value xk ∈ [xL, xR],
k = 1, . . . , r, where r denotes the total number of measurement sets.

Coupled ordinary differential equations can be used to define a fitting criterion,
for example if the in- or outflow of a system is investigated. Algebraic differen-
tial equations are highly useful in case of implicit boundary conditions, since
coupling positions may coincide with boundary points. The coupled system of
ordinary differential algebraic equations is given in the form

∂vj
∂t

= Gj(p, u(p, xj, t), ux(p, xj, t), uxx(p, xj, t), v, t) ,

0 = Gj(p, u(p, xj, t), ux(p, xj, t), uxx(p, xj, t), v, t) ,
(8)

where u(p, x, t) is the state variable of the partial differential equation and
xj is any x-coordinate value where the corresponding ordinary differential or
algebraic equation is to be coupled to the partial one, j = 1, . . . , nc.

Now we extend the model structure to allow different integration intervals in
the x-direction. A possible application is the diffusion of a substrate through
different media, where we want to describe the transition from one area to
the next by special conditions. Since these transition conditions may become
non-continuous, we need a more general formulation and have to adapt the
discretization procedure.

The general model is defined by a system of nd one-dimensional partial differ-
ential equations and na algebraic equations in one or more spatial intervals,
see also Schittkowski [51,55]. These intervals are given by the outer bound-
ary values xL and xR that define the total integration interval for the space
variable x, and optionally some additional internal transition points xa1, . . . ,
xama−1. Thus, we get a sequence of ma + 1 boundary and transition points

xa0 = xL < x
a
1 < · · · < xama−1 < x

a
ma

= xR .

For each integration interval, we get a system of partial differential algebraic
equations (5), eventually also with additional flux functions and coupled ordi-
nary differential algebraic equations. A solution depends on the spatial variable
x, the time variable t, the parameter vector p, the corresponding integration
interval, and is therefore written in the form vi(p, t) and ui(p, x, t) for i = 1,
. . . , ma.

Transition conditions between different integration areas are allowed at transi-
tion points in Dirichlet or Neumann form depending on the time variable, the
parameters to be estimated, and the solution of the neighboring area. More
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complex implicit boundary and transition conditions can be defined in the
form of coupled algebraic equations.

There are many practical situations where model equations change during the
integration over time and where corresponding initial values at the switching
points must be adopted. A typical example is a pharmacokinetic application
with an initial infusion and subsequent application of drug doses by injection.
In this case, it is even possible that the solution becomes non-continuous at a
switching point. Thus, we suppose that nb break or switching points with

τ0 = 0 < τ1 < . . . < τnb
< τnb+1 = T

are given, where T is the last experimental time value.

For the first integration interval, the same initial, boundary, and transition
values are given as before. For all subsequent intervals, however, the integra-
tion subject to the time variable is to be restarted at a switching point and
new function values can be provided that may depend now also on the solution
of the previous section. Initial values at a switching point are evaluated from

ui(p, x, τk) = bik(p, u
i
−(p, x, τk), v−(p, τk), x) ,

v(p, τk) = b̃(p, v−(p, τk))
(9)

for i = 1, . . . , ma and k = 1, . . . , nb, where u
i
−(p, x, τk) and v−(p, τk) denote

the solution of the coupled PDAE system in the previous time interval at
t = τk.

Since the right-hand side of the partial differential equation (5) and also the
corresponding boundary and transition functions depend on the time variable,
they may change from one interval to the next. Particularly non-continuous
transitions at switching points are allowed. It is even possible that break points
become variables to be adapted during the optimization process.

Additional nonlinear equality and inequality constraints of general form are
allowed, see (1). Restrictions are useful to describe certain limitations on the
choice of parameter values, for example monotonicity. It is often reasonable
to define dynamical constraints, where the restriction functions depend on
the solution of the partial differential equation and its first and second spa-
tial derivatives at predetermined time and spatial values, and the solution of
coupled ordinary differential equations,

gj(p) = gj(p, u
ij(p, xj, tkj

), uijx (p, xj, tkj
), uijxx(p, xj, tkj

), v(p, tkj
), tkj

) (10)

for j = me + 1, . . . , mr. Here the index ij denotes the corresponding inte-
gration area that contains the spatial parameter xj, and kj the corresponding
experimental time where a restriction is to be formulated.
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3 Numerical Methods

A widely used idea is to transform partial differential equations into a system
of ordinary differential algebraic equations by discretizing the model functions
subject to the spatial variable x. This approach is known as the numerical
method of lines, see for example Schiesser [48]. For the i-th integration interval
of the spatial variable, we define a uniform grid and get a discretization of the
whole space interval from xL to xR. To approximate the first and second
partial derivatives of u(x, t, p) subject to the spatial variable at a given point
xk, k = 1, . . . , ng, several different alternatives have been implemented in the
code PDEFIT, see Schittkowski [53] for more details, which is applied for the
numerical tests of this paper:

a) Difference Formulae: Derivatives are approximated by difference formulae
at 3 and 5 grid points for first derivatives, that are applied recursively to get
also second derivatives. Alternatively, a 5-point difference formula for second
derivatives is implemented as well. The difference formulae are adapted at the
boundary to accept given function and gradient values. Moreover, first deriva-
tives can be approximated by simple forward and backward differences. They
are particularly useful in a situation, where an upwind formula is desirable,
but the right-hand side of the PDE is not given in flux form, see below. These
difference formulae can be combined and applied individually to the spatial
derivatives of the state variables under consideration.

b) Upwind Formulae for Hyperbolic Equations: In case of a scalar hyperbolic
equation

uit = f
i
x(x, t, u

i, p) (11)

with a so-called flux function f , approximation by polynomials or difference
formulae might become unstable, especially if non-continuous boundary con-
ditions are supplied to describe for example the propagation of shocks, see
Schiesser [48] for some numerical examples. Thus, special difference formulae
have been derived in the past to overcome the instabilities, based, e.g., on
so-called upwind formulae. They consist of simple forward or backward differ-
ences, if the flux direction is known in advance, or of more advanced higher
order TVD formulae. For more information, see the original literature, for ex-
ample Chakravarthy and Osher[10], Sweby [60], Wang and Richards [64], and
Yang and Przekwas [68].

c) Systems of Advection-Diffusion Equations: Systems of non-homogeneous,
nonlinear hyperbolic or advection equations depending on an area index i,
i = 1, . . . , na and u

i ∈ IRnp , np ≥ 1, can be solved by essentially non-oscillatory
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(ENO) schemes, see Harten et al [29], Harten [30], or Walsteijn [63]. The equa-
tions are of the form

uit + f
i
x(u

i, p) = gi(x, t, ui, uix, u
i
xx, p) . (12)

High order polynomials are applied to approximate a primitive function, which
is supposed to represent the flux function at intermediate spatial grid points.
The choice of the corresponding stencil depends on the magnitude of divided
differences, to direct the stencil away from discontinuities. To solve also sys-
tems of hyperbolic equations, a full eigenvalue-eigenvector decomposition of
the Jacobian of the flux function subject to ui is performed, and the scalar
ENO method is applied to coefficient functions after a suitable transforma-
tion. The resulting system of ordinary differential equations is solved either
by implicit ODE solvers as before, or by a special Runge-Kutta method with
fixed stepsize to satisfy the CLF condition.

If a boundary or transition condition is given in Dirichlet-form, we insert
the value of the boundary function directly to interpolate or approximate
u(x, t, p) as described above. Alternatively, a boundary condition may appear
in Neumann-form. In this case, the derivative values at the boundary are
replaced by the given ones before evaluating the second order spatial derivative
approximations.

Ordinary differential and algebraic equations are added to the discretized sys-
tem without any further modification. Since arbitrary coupling points are al-
lowed, they are rounded to the nearest line of the discretized system. In the
same way fitting criteria can be defined at arbitrary values of the spatial vari-
able.

In case of algebraic partial or ordinary differential equations, boundary con-
ditions have to satisfy the algebraic equations. Consistent initial values are
computed internally, where some data must be given to serve as starting pa-
rameters for the nonlinear programming algorithm. Consequently, we allow
only index-1-systems unless it is guaranteed, that consistent initial values for
the discretized DAE are available.

It is possible that the right-hand side of a PDAE becomes non-continuous
subject to integration time. Thus, it is necessary to supply time values and
corresponding initial values depending on the solution of the previous interval,
where the integration of the DAE is to be restarted with initial tolerances, for
example with the initially given stepsize. The integration in the proceeding
interval is stopped at the time value given minus a relative error in the order
of the machine precision. Break or switching points are either constant or
optimization variables to be adapted by the optimization code.

It can be shown that the resulting large system of ordinary differential equa-
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tions becomes stiff in some situations, when discretization accuracy increases.
Thus, the usage of implicit solvers is recommended. Since the Jacobian of
the discretized right-hand side has a band structure, it is essential that the
selected method is capable to exploit sparsity efficiently.

Finally, the resulting least squares problem (1) can be solved by any of the
available standard solvers, see for example Dennis et al. [17], Gill et al. [21], or
Schittkowski [49]. The algorithms discussed in these references, are based on
the Gauss-Newton method and require first derivatives of the fitting criteria
subject to the parameters to be estimated.

4 Applications and Numerical Simulation Results

Parameter estimation in dynamic systems is a widely used technique. Only a
few examples are listed to present a brief review of some industrial and aca-
demic applications. The intention is to give an impression on the complexity
of real life mathematical models.

The numerical test results are obtained by a code called PDEFIT, wich is
designed to solve parameter estimation problems based in one-dimensional,
time-dependent partial differential algebraic equations with all the extensions
discussed in Section 2, see Schittkowski [53]. Differential algebraic equations
are integrated by the implicit code RADAU5, see Hairer and Wanner [28].
The underlying least squares problem is solved by the code DFNLP of Schitt-
kowski [50]. By transforming the original problem into a general nonlinear
programming problem in a special way, typical features of a Gauss-Newton
and quasi-Newton least squares method are retained. The resulting optimiza-
tion problem is solved by a standard sequential quadratic programming code
NLPQL of Schittkowski [49].

In most cases, model functions are either interpreted and evaluated symbol-
ically by a program called PCOMP, see Dobman et al. [18] that allows in
addition automatic differentiation of nonlinear model functions. The source
codes for the first six models are contained in the database of the interactive
software system EASY-FIT, see Schittkowski [55], among the 1,000 real life
and academic data fitting problems published there.

4.1 Transdermal Application of Drugs

We consider the permeation of substrates through cutaneous tissue with si-
multaneous metabolism. Possible practical background is the analysis and
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numerical simulation of transdermal processes for developing new drugs and
application devices, see for example Guy and Hadgraft [26]. Especially the ef-
fects of various parameters influencing diffusion and metabolism can be studied
in detail, once a reliable model validated by experimental data is available.

A special laboratory experiment is to be modeled, where a so-called donor con-
tains a given volume and concentration of a substrate that penetrates through
a thin layer of a cutaneous tissue of given size. At certain times, the concen-
tration of the substrate is measured at both sides of the membrane.

The situation is a bit more complicated in the sense that at the same time,
another substrate is generated, the so-called metabolite, caused by enzymatic
interactions, see Hotchkiss [36] or Hadgraft [27]. The concentration of this
new substrate is also measured on both sides of the membrane. It is assumed
that metabolism can be described by Michaelis-Menten kinetics, see Pratt and
Taylor [47], that the distribution of metabolically active enzymes in the layer
is homogeneous, and that the mass transport is one-dimensional along the
x-axis.

The dynamical variables we need to describe the process are substrate and
metabolite concentration, (us/m(x, t)), substrate and metabolite mass at donor,
x = 0 (vs/m(t)), and substrate and metabolite mass at receiver, x = l (ws/m(t)).
Two partial differential equations describe the diffusion through the skin based
on the Michaelis-Menten effect, see also Steinsträsser [59] or Boderke et al. [6]
or Crank [13] for a more rigorous mathematical treatment of diffusion pro-
cesses. They are given by

ust(x, t) = Ds
T u

s
xx(x, t) − Vmaxu

s(x, t)

Km + us(x, t)
,

umt (x, t) = Dm
T u

m
xx(x, t) +

Vmaxu
s(x, t)

Km + us(x, t)
,

(13)

0 < x < lT and t > 0, whereKm is the Michaelis-Menten constant. Diffusion of
substrate and metabolite through a membrane are described by the equations

ust(x, t) = Ds
M usxx(x, t) , umt (x, t) = Dm

M umxx(x, t) , (14)

lT < x < l and t > 0. D
s/m
T is the diffusion coefficient of substrate and

metabilote in the tissue, D
s/m
M the diffusion coefficient of substrate and meto-

bolite in the membrane. Corresponding initial values are us(x, 0) = 0 and
um(x, 0) = 0 for all x with 0 ≤ x ≤ l.

Accumulation of mass flux at both sides of the two layers leads to four ordinary

10



differential equations coupled to (13) and (14),

v̇s(t) = FaD
s
T u

s
x(0, t) , v̇m(t) = FaD

m
T u

m
x (0, t) ,

ẇs(t) = −FaD
s
M usx(l, t) , ẇm(t) = −FaD

m
M umx (l, t)

(15)

for t > 0. They describe the behaviour of substrate and metabolite at both end
points, the mass flux into and out of tissue and membrane. Initial conditions
are vs(0) = Y0, v

m(0) = 0, ws(0) = 0, and wm(0) = 0.

Boundary conditions are formulated to couple the partial differential equations
and the ordinary differential equations by

Va u
s(0, t) = P s vs(t) , Va u

m(0, t) = Pm vm(t) ,

Va u
s(l, t) = P s ws(t) , Va u

m(l, t) = Pm wm(t)
(16)

for all t > 0. Between both integration areas, we allow non-continuous condi-
tions for the transition of substrate and metabolite from tissue to membrane
and vice versa, but require continuous mass flows at t = lT leading to

us(l−T , t) = T s us(l+T , t) , um(l−T , t) = Tm um(l+T , t) ,

Ds
T u

s
x(l

+
T , t) = Ds

M usx(l
−
T , t) , Dm

T u
m
x (l

+
T , t) = Dm

M umx (l
−
T , t) .

(17)

These conditions are to be valid for all t with t > 0. The remaining constants
are donor volume Va, membrane surface Fa, metabolization rate Vmax, and
transition parameter T s/m of substrate and metabolite. Parameters to be es-
timated are D

s/m
T , D

s/m
M , distribution coefficients P s/m, and initial substrate

mass Y0. It is supposed that substrate and metabolite mass are measured at
donor and receiver sides for different times leading to the fitting functions
vs(t), vm(t), ws(t), and wm(t).

Fitting criteria and experimental data of a typical experiment are plotted in
Figures 1 to 4, see Schittkowski [55]. The time horizon is extended to 1, 000
min to analyze the steady state case.
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Fig. 2. Substrate at Receiver
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Fig. 3. Metabolite at Donor
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Fig. 4. Metabolite at Receiver

4.2 Groundwater Flow

The mathematical model describes a tracer experiment that was conducted at
the lake G̊ardsjön in Sweden, see Andersson and Olsson [2], to investigate acid-
ification of groundwater pollution. To conduct the experiment, a catchment of
1,000m2 was covered by a roof. A tracer impulse consisting of lithium-bromide
was applied with steady state flow conditions. Tensiometer measurements of
the tracer concentration were documented in a distance of 40 m from the
center of the covered area.

The diffusion equations proposed by Van Genuchten and Wierenga [61] are
chosen by Hoch [35] to analyze the diffusion process and to get a simulation
model. A two-domain approach was selected in the form of two equations, to
model the mobile and the immobile part of the system. The first one describes
the diffusion of the flow through soil by convection and dispersion, the second
one the so-called immobile part, the mass transfer orthogonal to the flow
direction,

θm
∂cm
∂t

(x, t) + θim
∂cim
∂t

(x, t) = θmDm
∂2cm
∂x2

(x, t)− θmVm∂cm
∂x

(x, t) .

θim
∂cim
∂t

(x, t) = α (cm(x, t)− cim(x, t))
(18)
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for t > 0 and 0 < x < L. Boundary conditions are

cm(0, t)− Dm

Vm

∂cm
∂x

(0, t) =



a , if t < t0

0 , otherwise ,
cm(L, t) +

Dm

Vm

∂cm
∂x

(L, t) = 0

for t > 0, and initial values are given by cm(x, 0) = 0 and cim(x, 0) = 0 for
0 < x < L. Then we evaluate the fitting function

h(t) = cm( 1
2
L, t)− Dm

Vm

∂cm
∂x

( 1
2
L, t) (19)

defined for t > 0. In the above equations, cm(x, t) and cim(x, t) denote the
tracer concentrations, θm and θim the corresponding water contents, Dm the
dispersion coefficient, and α the mass transfer coefficient.

Experimental measurements are given inside the spatial area at x = 40. Pa-
rameters to be estimated are pm, pim, and Dm, whereas t0, Vm, and a are
considered as constants. Figure 5 shows all experimental data and the fitting
criterion. The corresponding surface plots for mobile and immobile parts are
found in Figures 6 and 7. For more details, see Hoch [35] and Schittkowski [55].
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Fig. 5. Fitting Criterion and Data

4.3 Cooling a Hot Strip Mill

We consider a mathematical model for cooling a thin metal plate of thickness
L in a rolling mill by water at one side and by surrounding air at the other side.
For simplicity, only one cooling section is considered and we suppose that the
temperature can be measured at both sides of the plate. Moreover, we assume
constant speed and neglect heat transfer orthogonal to the move direction.
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Then we are able to apply the standard one-dimensional heat equation

Cp(T (z, t)) p(T (z, t))
∂T (z, t)

∂t
=
∂

∂z

(
λ(T (z, t))

∂T (z, t)

∂z

)
, (20)

where T (z, t) denotes the temperature at time t and the spatial position z
orthogonal to the plate surface. The density p(T ) and the heat transfer coef-
ficient λ(T ) are given by

p(T ) = kp0 + k
p
1 T , λ(T ) = kλ0 + kλ1 T .

The specific heat capacity Cp(T ) known from piecewise linear interpolation of
tabulated data, see also Groch [23] or Kopp and Philipp [39].

Boundary conditions are formulated for air and water, cooling both sides with
surrounding temperatures Ta and Tw, respectively, depending on the opera-
tional conditions of the mill. Corresponding heat transfer constants are αa in
the first and αw in the second case. At z = 0, the plate is cooled by water only
between a time interval from t = tw1 to t = tw2 , which depends on the speed of
the plate. Neumann boundary conditions are obtained by combining Newton
and Stefan-Boltzmann laws leading to

λ(T (0, t))
∂T (0, t)

∂z
= αw(T (0, t)− Tw) + ε(T (0, t)) C (T 4(0, t)− T 4

w)

for 0 < tw1 < t < t
w
2 and

λ(T (0, t))
∂T (0, t)

∂z
= αa(T (0, t)− Ta) + ε(T (0, t)) C (T 4(0, t)− T 4

a )

otherwise. In a similar way, the right boundary condition is given for air cooling
only, see Seredynski [56]. Initial temperature is set to T (z, 0) = T0.

For a typical data fitting test run, we consider αw and αa as unknown param-
eters to be identified. The specific heat capacity Cp(T ) is defined by linear
interpolation of some data. The integration is restarted at the two switching
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Fig. 8. Temperature at z = 0
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points tw1 and tw2 . Corresponding data and model function plots are shown in
Figures 8 and 9, and Figure 10 contains the resulting surface plot.

4.4 Drying Maltodextrin in a Convection Oven

Hot-air drying is a common food preservation process, characterized by the
removal of water using air as heat delivering and water removal agent, see
for example Hayashi [32]. To model the degradation kinetics during drying,
the fundamental laws that govern the drying process are Fick’s second law of
diffusion and the energy conservation law. The model was first investigated by
Mishkin [44,45], and has been used in the past for the optimization of drying
processes, for example by Banga et al. [3,4]. The overall diffusion process is
described by

∂

∂t
Mw(x, t) =

∂

∂x

(
D(Mw(L, t), T (t))

∂

∂x
Mw(x, t)

)
(21)

defined for all x with 0 ≤ x ≤ L and t ≥ 0, where the diffusion coefficient
D(Mw, T ) is a function of temperature T and moisture content Mw at the
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right boundary. The thickness L depends on the actual experiment and is
measured.

Initial condition is Mw(x, 0) = Mw,0 with an initial moisture content Mw,0.
There exists a left homogeneous Neumann boundary condition and a right
Dirichlet boundary condition Mw(L, t) = Mw,eq(t), t ≥ 0. The moisture-
temperature dependence of polymer solutions viscosity is modeled using the
William, Landel and Ferry [66] equation. Assumed is a linear chemical struc-
ture and that the polymer is in the rubbery state, see Nelson and Labuza [46]
and William et al. [66],

D(Mw, T ) = Dr10
C1C2(T−Tr)

(C2−(Tg−Tr))(C2+(T−Tg)) . (22)

Coefficients Dr, C2, and reference temperature Tr are unknown parameters
that are to be estimated by a least squares fit, and C1 is known a priori.

The Gordon-Taylor equation has been widely used to describe the moisture
dependence of the glass transition temperature for a binary mixture of biopoly-
mer and plastisizer, see Nelson and Labuza [46],

Tg(t) =
kXw(t)Tgw + TgMD12

(1−Xw(t))

kXw(t) + (1−Xw(t))
, (23)

where the water-mass fraction is defined by Xw(t) = Mw(L,t)
1+Mw(L,t)

and where
the remaining constants k, Tgw , and TgMD12

are given. An energy balance at
the drying slab is used to model the temperature during drying according to
Mishkin [45],

d

dt
T (t) =

hA(t)

α(t)
(Tdb(t)− T (t)) + λw(t)ms

α(t)

d

dt
Mw(t) (24)

for t > 0 with initial condition T (0) = T0, where α(t) = msC
p
s +msMw(t)C

p
w,

hA(t) = A0P1Mw(t), λw(t) = λ
0
w − λ1

w (T (t) + 273). P1 is an unknown param-
eter we want to estimate and Cp

s , C
p
w, λ

0
w, and λ

1
w are known constants. Solid

mass ms and initial temperature T0 are determined by the experiment. The
circular drying area A0 is computed from the measured diameter. The average
moisture content is defined by

Mw(t) =
1

L

∫ L

0
Mw(ζ, t)dζ . (25)

The dry bulb temperature Tdb(t) is continuously monitored for each experi-
ment. The raw temperature data are smoothed by B-splines, and values for the
sampling times are stored. The equilibrium moisture content is determined by
weight difference from the state and from the known initial moisture content.
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In order to model the temperature dependence of maltodextrin, a modified
GAB model equation is used,

Mw,eq(t) =
C(t)K(t)Wm(t)aw

(1−K(t)aw) (1−K(t)aw + C(t)K(t)aw)
, (26)

where aw denotes the measured water activity. The model parameters C(t),
K(t) and Wm(t) are fitted to an Arrhenius temperature dependence and the
data are fitted in a single least squares regression yielding the parameters

C(t) = 0.04e
1257.14

T (t)+273 , K(t) = 0.65e
144.57

T (t)+273 , Wm(t) = 0.05e
−99.27

T (t)+273 ,

see also Frias et al. [20] for a more detailed outline of the model equations and
the experimental design.

To give an impression on a typical data fitting result, we select one of the
experimental data sets of Frias et al. [20]. Measured data for moisture content
and temperature at different time values are to be fitted to (25) by adapt-
ing the model parameters Dr, P1, C2, Tr, and Mw,0. The corresponding data
and surface plots in Figures 11, 12, and 13. Because of lack of a sufficiently
large number of experimental data, the parameter estimates are poor, highly
correlated, and possess large confidence intervals. More accurate results are
obtained by Frias et al. [20] by simultaneously taking 18 experimental data
sets into account differing only by the initial moisture contents.

4.5 Acetylene Reactor

The computation of optimal feed controls for chemical reactors, especially for
tubular reactors, is a well-known technique, see Edgar and Himmelblau [19]
or Buzzi-Ferraris et al. [7]. The mathematical model is given as a distributed
parameter system consisting of a set of first-order partial differential equations
in one space dimension. The chemical reactions and the temperature depend
on the spatial variable, whereas the dynamical decrease of the cross-sectional
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area caused by coke deposition is time-dependent. In both cases, we know
initial values either in the form of time-dependent feed control functions or a
constant tube diameter. Alternative approaches to compute optimal reactor
feed rates are discussed in Birk et al. [5], see also Liepelt and Schittkowski [41].

We consider a chemical reactor producing acetylene (C2H2), reacting methane
(CH4) in natural gas with oxygen. This reaction requires less oxygen compared
with complete combustion. The products are quickly quenched to keep the
acetylene from being converted entirely to coke, see Wansbrough [65]. During
the reaction process, a small part of the carbon is deposited in the reactor as
coke. The quantity and its distribution in the reactor depend on the reaction
equations. Since it is impossible to measure the cross-sectional area directly,
we need a mathematical model that describes the functional dependence of the
cross-sectional area upon other system parameters. If the deposition of coke
reaches a certain limit, the reactor must be stopped and the tube cleaned.

There are six reactions to be taken into account, see Birk et al. [5] for details,
which can be described by a system of eight ordinary differential equations.
Let Ci denote the molar concentration of the i-th component, i = 1, . . . , 8,
with initial values

C1(0, t) = C
0
1(t) , C2(0, t) = C

0
2(t) , Ci(0, t) = 0 , i = 3, . . . , 8 .

The eight material balance equations depend on the rates of the various reac-
tions,

ri(x, t) = ki exp

(
−Ei

R

(
1/T (x, t)− 1/Tr

))
ci(x, t)

for i = 1, . . . , 5, where c1(x, t) = Ca1
1 (x, t), c2(x, t) = C1(x, t)C

a2
2 (x, t),

c3(x, t) = C6(x, t)C
0.5
2 (x, t), c4(x, t) = Ca4

3 (x, t), c5(x, t) = C5(x, t)C
0.5
2 (x, t),

and on the velocity of the mixture in the reactor, because this speed deter-
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mines the time that the components spent in the reactor,

v(x, t)
∂

∂x
C1(x, t) = −r1(x, t)− r2(x, t) ,

v(x, t)
∂

∂x
C2(x, t) = −r2(x, t)− 1

2
r3(x, t)− 1

2
r5(x, t) ,

v(x, t)
∂

∂x
C3(x, t) =

1
2
r1(x, t)− r4(x, t) ,

v(x, t)
∂

∂x
C4(x, t) = r3(x, t) ,

v(x, t)
∂

∂x
C5(x, t) =

3
2
r1(x, t) + r2(x, t) + r4(x, t)− r5(x, t)

−n(1− ε)r4(x, t) ,

v(x, t)
∂

∂x
C6(x, t) = r2(x, t)− r3(x, t) ,

v(x, t)
∂

∂x
C7(x, t) = r2(x, t) + r5(x, t) ,

v(x, t)
∂

∂x
C8(x, t) = 2(1− ε)r4(x, t) .

(27)

The reaction constants are k1, . . . , k5 with five activation energies E1, . . . . E5,
and three reaction orders a1, a2, and a4. For the smaller and less important
reactions, the stoichiometric order can be used as an estimate for the reaction
order. For the other reactions, these parameters have to be derived from the
real reactor that is going to be examined. The average temperature Tr is used
to scale the exponential functions and R denotes the gas constant.

Velocity and density of the mixture are given by

v(x, t) =
ṁ(t)

ρ(x, t)A(x, t)
, ρ(x, t) =

8∑
j=1

Cj(x, t)Mj , (28)

where the total mass flow ṁ(t) = ṁ1(t) + ṁ2(t) is the sum of the two input
flows.Mj denotes the molar weight of the j-th component. Since the acetylene
reactor is controlled by the feeds of natural gas and oxygen, these are the only
components with non-vanishing initial values. Finally, the temperature in the
reactor can be described by an ordinary differential equation,

∂

∂x
T (x, t) =

1

ρ(x, t)v(x, t)cp(x, t)

5∑
i=1

ri(x, t)∆Hi (29)

with the initial condition T (0, t) = T0. The incremental change of the temper-
ature is determined by the rate of heat release for all reactions, which depends
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on the total heat capacity

cp(x, t) =
8∑

j=1

cpjMjCj(x, t)/
8∑

j=1

MjCj(x, t) .

The individual heat capacities cpj are considered to be constant, and the pa-
rameters ∆Hi denote the known heats of reaction. Coke deposition is modeled
by the time-dependent differential equation

∂

∂t
A(x, t) = −βr4(x, t) (30)

with initial condition A(x, 0) = A0 and reaction parameter β.

To sum up, we get a distributed system in the form of ten first-order partial
differential equations. We can select either the time or the spatial variable to
transform the equations into an explicit system of partial differential algebraic
equations.

To find out whether a given input feed can be identified correctly, a data fitting
problem is generated proceeding from ṁk(t) = ak for k = 1, 2, where a1 and
a2 are the parameters to be fitted, see Birk et al. [5] for details. Corresponding
surface plots for temperature and cross sectional area are shown in Figures 14
and 15.

4.6 Fluid Dynamics of Hydro Systems

We consider the flow process in an open rectangular channel. Suppose that
Q(x, t) denotes the discharge of the incompressible fluid, say water, also ex-
pressed in the form Q(x, t) = U(x, t)A(x, t), where U(x, t) is the velocity
averaged over the cross sectional area A(x, t). It is assumed that there is no
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lateral inflow or outflow, and that A(x, t) = b H(x, t) because of the rectan-
gular geometry of the channel, where b is the constant width and H(x, t) the
height or water level.

Flow dynamics can be modeled by the equations of Saint-Venant [15], see also
Cunge and Holly [14], Graf [22], or Abbott and Minns [1]. The first partial
differential equation results from the continuity equation to model the flux of
the momentum,

∂

∂t
Q(x, t) +

∂

∂x

(
1

2
gbH(x, t)2 +

β

A(x, t)
Q(x, t)2

)
= −gA(x, t)(Fr(x, t)− Fl(x))

(31)

where g is the gravitational constant and β the Boussinesq velocity distribution
coefficient, Fl(x) the bed slope of the channel, and Fr(x, t) the friction slope.
A second differential equation is needed for the conservation of mass

∂

∂t
A(x, t) +

∂

∂x
Q(x, t) = 0 . (32)

Together with the Manning number c and the fraction of cross sectional area
versus wetted boundary R(x, t), we use the so-called Chezy formula for com-
puting the friction slope

Fr(x, t) =
c2 |Q(x, t)|Q(x, t)
R(x, t)4/3A(x, t)2

, R(x, t) =
A(x, t)

b+ 2H(x, t)
.

Equations (31) and (32) define a system of hyperbolic partial differential
equations in flux formulation, an important assumption for applying spe-
cial discretization techniques discussed in Section 3. Initial values describe
the discharge and water level distribution at t = 0, Q(x, 0) = Q0(x) and
H(x, 0) = H0(x). Boundary values are chosen to model a specific situation,
where a time dependent inflow at one side is given, say at x = 0, with an
input function s(t), and an outflow controlled by an underflow gate opening
subject to a control function u(t), leading to

Q(0, t) = s(t) , Q(L, t) = αu(t)
√
g(H(L, t)−Hf ) ,

see Graf [22], where Hf is the right water level outside the reach and α > 0 a
constant, see Figure (16) for a series of two gates. Since the underlying system
is of order 1, we need only two boundary conditions to get a well-defined
model.

In many practical situations, channels are connected and form complex net-
works with various topologies, see Gugat et al. [24] and Gugat [25]. To give
a simple example, consider the two serial channels of Figure (16) with the
same width for simplicity, which are connected at x = L1. Water height can
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be controlled by two underflow gates, one between the two channels, one at
the right boundary x = L2. Both are controllable by time-dependent, smooth
functions u1(t) and u2(t). The dynamical equation (31) is defined in two dif-
ferent integration areas from x = 0 to x = L1, then again from x = L1 to
x = L2, leading to boundary and transition conditions of the form

Q(0, t) = s(t) , Q+(L1, t) = αu1(t)
√
g(H−(L1, t)−H+(L1, t)) ,

Q−(L, t) = Q+(L, t) , Q(L2, t) = αu2(t)
√
g(H(L2, t)−Hf ) .

Here the minus and plus signs denote the corresponding limits from the left
and right side at transition point x = L1.

We consider two serial channels shown above. The inflow s(t) is given by linear
interpolation of some data. We are interested in the question, whether the flow
in the channel can be controlled at the two underflow gates subject to given
water levels. Controlled are the openings of the gates by simple polynomial
control functions, see Gugat et al. [24] or Schittkowski [55] for details. Corre-
sponding discharge and water level surface plots are shown in Figures 17 and
18.
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4.7 Molten Carbonate Fuel Cells

Molten carbonate fuel cells (MCFC) convert chemical energy contained in
fuel and oxidizer to electrical energy by a complex electro-chemical reaction.
Typically, a mixture of natural gas and steam is fed to an anode channel,
where internal reforming and oxidation at an electrode take place. The gas
exhausting the anode, moves through a catalytic combustion chamber with
additional air supply, and enters the cathode channel from the reverse side
leading to a reduction reaction. Carbonate ions are transferred between the
electrodes through a solid, an electrolyte, see Figure 19. Meanwhile, fuel cells
are commercially available and get increasing interest because of the potential
to replace traditional coal or gas burning power systems.

One of the key questions is how to stabilize temperature within the cells to
improve performance and operation time, and we are interested in a mathe-
matical model to develop a control strategy. Most available models consider
the steady-state case, see for example Koh et al. [38]. Transient models for
MCFCs and related techniques are discussed in He and Chen [33], Lukas et
al. [43], and Simoglou et al. [58]. The presented approach is based on the
equations developed by Heidebrecht and Sundmacher [34], see also Chudej et
al. [11].

Fig. 19. Molten Carbonate Fuel Cell

First, we normalize all quantities and let t be the time and z be the spatial
variables, 0 ≤ t ≤ 1, 0 ≤ z ≤ 1. If xa/c = (x

a/c
1 , . . . , xa/cn )T denote the mol

fractions of n gas components under consideration in anode (a) and cathode
(c) channels, the gas phase balance equations can be derived in the form

1

T a(z, t)

∂

∂z
xai (z, t) = −ga(z, t) ∂

∂z
xai (z, t) +

m∑
k=1

(
νoxk,i − xai (z, t)νoxb,k

)
Dox

k R
ox
k (z, t)

+
m∑

k=1

(
νrefk,i − xai (z, t)νrefb,k

)
Dref

k Rref
k (z, t)

1

T c(z, t)

∂

∂z
xci(z, t) = gc(z, t)

∂

∂z
xci(z, t) +

(
νred1,i − xci(z, t)νredb,1

)
Dred

1 Rred
1 (z, t)

for i = 1, . . . , n, where m is the number of all reforming reactions in the
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gas phase, D
ox/ref/red
k the Damköhler number, T a/s/c(z, t) the temperature in

anode, solid and cathode, and ga/c(z, t) the convective molar flows in anode
and cathode. The remaining constants are not discussed, see Heidebrecht and
Sundmacher [34] for details. The reaction rates are computed by

Rref
1 (z, t) = exp

(
Eref

1 wa(z, t)
)(
xa1(z, t)x

a
2(z, t)−

xa4(z, t)x
a
3(z, t)

3

Kref
1

)
,

Rref
2 (z, t) = exp

(
Eref

2 wa(z, t)
)(
xa4(z, t)x

a
2(z, t)−

xa5(z, t)x
a
3(z, t)

Kref
2

)
,

Rox
k (z, t) =

xak+2(z, t)w
a
k(z, t)

1 +DII,ox
k wa

k(z, t)
,

Rred
1 (z, t) = −xc5(z, t)

√
xc6(z, t)

wc
1(z, t)

1 +DII,red
1 wc

1(z, t)
√
xc6(z, t)

with wa(z, t) = 1− 1

T a(z, t)
, ws(z, t) = 1− 1

T s(z, t)
, and

wa
k(z, t) = exp (Eox

1 w
s(z, t)) exp

(−αox
k n

ox
1 D

a
φ

T s(z, t)

)
,

ws
k(z, t) = exp (Eox

k w
s(z, t)) exp

(
αox

k n
ox
k D

a
φ

T s(z, t)

)
,

wc
1(z, t) = exp

(
Ered

1 ws(z, t)
)
exp

(−αred
1 nred

1 Dc
φ

T s(z, t)

)
,

k = 1, 2. Enthalpy balances lead to the temperature equations

cap(z, t)

T a(z, t)

∂

∂z
T a(z, t) = −ga(z, t)cap(z, t)

∂

∂z
T a(z, t)

+
m∑

k=1

Dref
ad,kD

ref
k Rref

k (z, t) + qas(z, t) ,

ccp(z, t)

T c(z, t)

∂

∂z
T c(z, t) = gc(z, t)ccp(z, t)

∂

∂z
T c(z, t) + qcs(z, t)

(33)

and

csp
∂

∂z
T s(z, t) = λs

∂2

∂z2
T s(z, t)−De

φieFI + qsa(z, t) + qsc(z, t)

+
m∑

k=1

(Dox
ad,k + n

ox
k D

a
φ)D

ox
k R

ox
k (z, t)

+(Dred
ad,1 + n

red
1 Dc

φ)D
red
1 Rred

1 (z, t)

(34)
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with cap(z, t) = cip

n∑
i=1

xai (z, t), c
c
p(z, t) = cip

n∑
i=1

xci(z, t). For computing qas(z, t),

qsa(z, t), qsc(z, t), and qcs(z, t), somewhat more complex formulae are available.
The ’+’ sign indicates that only positive values are taken into account. Con-
vective molar flow densities lead to two further algebraic partial differential
equations

0 =

(
− ∂

∂z
ga(z, t) +

m∑
k=1

(
νrefb,k D

ref
k Rref

k + νoxb,kD
ox
k R

ox
k

))
T a(z, t)cap(z, t)

−ga(z, t)cap(z, t)
∂

∂z
T a(z, t) +

m∑
k=1

Dref
ad,kD

ref
k Rref

k + qas(z, t) ,

0 =

(
− ∂

∂z
gc(z, t) + νredb,1 D

red
1 Rred

1

)
T c(z, t)ccp(z, t)

−gc(z, t)ccp(z, t)
∂

∂z
T c(z, t) + qcs(z, t) .

(35)

State variables are xai (z, t), x
c
i(z, t), T

a(z, t) , T s(z, t), T c(z, t), ga(z, t) and
gc(z, t), i = 1, . . . , n, where initial values are set to suitable constants. It is
assumed that the system can be controlled at the left-hand side of the anode
channel by input feeds for mol fractions, temperature and molar flows. Dirich-
let boundary conditions for the right-hand side of the cathode describe the
burner outlet concentrations related to the cathode inlet concentrations, where
heat exchanges with the environment are taken into account. Boundary func-
tions are completed by two additional homogeneous Neumann conditions for
the temperature in the electrolyte solid, see Heidebrecht and Sundmacher [34]
for details.

For a simple numerical test, we simulate a typical application by constant
temperature and input feed for the molar flow at the anode. The question is
whether the potential differences in anode, cathode, and electrolyte, D

a/s/c
φ ,

can be identified correctly by assuming that experimental data for temperature
and some mol fractions of gas components are available at anode and cathode
outflows. Since the flow directions in anode and cathode channel are known,
the corresponding temperature and molar flow spatial derivatives are approx-
imated by backward and forward differences, respectively. The corresponding
temperature distributions are shown in Figures 20 and 21.

4.8 Horn Radiators for Satellite Communication

Corrugated horns are frequently used as reflector feed sources for large space
antennae, for example for INTELSAT satellites, see Wolf et al. [67]. The goal
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Fig. 21. Temperature in Cathode Channel

is to achieve a given spatial energy distribution of the radio frequency (RF)
waves, called the radiation or directional characteristic. The transmission qual-
ity of the information carried by the RF signals is strongly determined by the
directional characteristics of the feeding horn as determined by its geometric
structure.

The electromagnetic field theory is based on Maxwell’s equations consisting
of four differential equations relating the electrical field E, the magnetic field
H, the electrical displacement, and the magnetic induction to electrical charge
density and current density, see Collin [12], Silver [57], or Waldron [62]. Un-
der some basic assumptions, particularly homogeneous and isotropic media,
Maxwell’s equations can be transformed into an equivalent system of two cou-
pled equations.

By assuming that the surface of the wave guide has ideal conductivity, and that
homogeneous Dirichlet and Neumann boundary conditions at the surface are
applied, we get the eigenmodes or eigenwaves for the circular wave guide. Since
they form a complete orthogonal system, electromagnetic field distribution in
a circular wave guide can be expanded into an infinite series of eigenfunctions,
and is completely described by the amplitudes of the modes.

For the discussed problem, only the transversal eigenfunctions of the wave
guides need to be considered. The eigenfunctions of the circular wave guide
are given in the form

TH
np =

√√√√ 2− δn0

(x′
np

2 − n2)π

Jn(x
′
npρ/z)∣∣∣Jn(x′

np)
∣∣∣
{
sinnφ

cosnφ

}
. (36)

Here Jn denotes the n-th Bessel function, xnp and x
′
np the p-th root of the

n-th Bessel function and the p-th root of the first derivative of the n-th Bessel
function, respectively, n = 0, 1, 2, . . . , p = 0, 1, 2, . . . . For the last term in
(36), either the upper or lower trigonometric function is used. Similarly, TE

np

is defined.
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In principle, the radiated far field pattern of a horn is determined by the field
distribution of the waves emitted from the aperture. On the other hand, the
aperture field distribution itself is uniquely determined by the excitation in
the feeding wave guide and by the interior geometry of the horn. Therefore,
assuming a given excitation, the far field is mainly influenced by the design of
the interior geometry of the horn.

Usually, the horn is excited by the TE11 mode, which is the fundamental, i.e.,
the first solution of the wave equation in cylindrical coordinates. In order to
obtain a rotational symmetric distribution of the energy density of the field
in the horn aperture, a quasi-periodical corrugated wall structure according
to Figure 22 is assumed, see Wolf et al. [67] and Johnson and Jasik [37]. To
reduce the number of optimization parameters, the horn geometry is described
by a set of envelope functions from which the actual geometric data for ridges
and slots can be derived. Typically, a horn is subdivided into three sections,
an input section, a conical section, and an aperture section. For the input
and the aperture section, the interior and outer shape of slots and ridges is
approximated by a second-order polynomial, while a linear function is used
to describe the conical section. It is assumed that the envelope functions of
ridges and slots are parallel in conical and aperture section. By this simple
analytical approach, it is possible to approximate any reasonable geometry
with sufficient accuracy by the design parameters shown in Figure 22.

Fig. 22. Envelope Functions of a Circular Corrugated Horn

A circular corrugated horn has a modular structure, where each module con-
sists of a step transition between two circular wave guides with different di-
ameters, see Figure 23.

From Maxwell’s equations, it follows that the tangential electrical and mag-
netic field components must be continuous at the interface between two wave
guides. This continuity condition is exploited to compute a relation between
the mode amplitudes of the excident bkE,j, b

k
H,j and incident akE,j, a

k
H,j waves

in each wave guide of a module, see Figure 23, k = 1, 2. Then voltage and
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Fig. 23. Cross Sectional View of One Module

current coefficients are defined by

Uk
H,j =

√
zkH,j

(
akH,j + b

k
H,j

)
, Uk

E,j =
√
zkE,j

(
akE,j + b

k
E,j

)
,

where zkH,j is the j-th magnetic and zkE,j the j-th electric field impedance,
k = 1, 2. IkH,j and I

k
E,j are given by the same formulae, where only the + sign

is replaced by the − sign. From the eigenfunctions, the tangential fields in
both areas are obtained,

Ek =
∞∑
j=1

(
Uk

H,je
k
H,j + U

k
E,je

k
E,j

)
, Hk =

∞∑
j=1

(
IkH,jh

k
H,j + I

k
E,jh

k
E,j

)
,

k = 1, 2, where the tangential field vectors in case of excitation by the TE11

mode are computed from (36). In a similar way, hkH,j(ρ, z, φ), e
k
E,j(ρ, z, φ), and

hkE,j(ρ, z, φ) are defined, see Hartwanger et al. [31] for details. The tangential
fields must be continuous at the transition between two wave guides. Moreover,
boundary conditions must be satisfied, E2 = 0 for r1 ≤ r ≤ r2. Now only n1

eigenwaves in region 1 and n2 eigenwaves in region 2 are considered. The
electric field in area 1 is expanded subject to the eigenfunctions in area 2
and the magnetic field in area 2 subject to the eigenfunctions in area 1. After
some manipulations, in particular interchanging integrals and finite sums, the
following relationship between voltage coefficients in region 1 and 2 can be
formulated in matrix notation:


U2

E

U2
H


 =



XEE XHE

XEH XHH





U1

E

U1
H


 . (37)

Here Uk
E and Uk

H are vectors, consisting of the coefficients Uk
E,j and Uk

H,j for
j = 1, . . . , nk, respectively, k = 1, 2. The elements of the matrix XEE are
given by

X ij
EE =

∫ r2

0

∫ 2π

0
e2E,i(ρ, z, φ)

T e1E,j(ρ, z, φ) ρ dφ dρ . (38)
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In the same way,XHE,XEH , andXEE are defined. Moreover, matrix equations
for the current coefficients are available. Next, the relationship between the
mode amplitude vectors bkE and bkH of the excident waves bkE,j, b

k
H,j, and a

k
E

and akH of the incident waves akE,j, a
k
H,j, j = 1, . . . , nk, k = 1, 2, are evaluated.

After some algebraic manipulations of matrices, we obtain the total scattering
matrix 

 b1(p)
b2(p)


 =


S

%
11(p) S

%
12(p)

S%
21(p) S

%
22(p)




 a1

a2


 , (39)

see Kühn and Hombach [40] or Hartwanger et al. [31], relating the amplitudes
at the feed input with those at the aperture. Now the vector a1 describes the
amplitudes of the modes exciting the horn, the TE11 mode in our case. Thus,
a1 is the 2n1-dimensional unity vector. The vector a2 contains the amplitudes
of the reflected modes at the horn aperture, known from the evaluation of the
far field. Only a simple matrix times vector computation is performed to get
the modes of reflected waves b1(p) and b2(p), once the scattering matrix is
known.

The main goal of the optimization procedure is to find an interior geometry

p of the horn so that the distances of bj2(p) from given amplitudes b
j

2 for j =
1, . . . , 2n2 become as small as possible. The first component of the vector b1(p)
is a physically significant parameter, the so-called return loss, representing the
power reflected at the throat of the horn. Obviously, this return loss should
be minimized as well. The phase of the return loss and further components of
b1(p) are not of interest.

From these considerations, the least squares optimization problem

p ∈ IRn :
min

2n2∑
j=1

(bj2(p)− bj2)2 + µ b11(p)2

pl ≤ p ≤ pu
(40)

is obtained. The upper index j denotes the j-th coefficient of the correspond-
ing vector, µ a suitable weight, and pl, pu lower and upper bounds for the
parameters to be optimized. Note also that complex numbers are evaluated
throughout this section, leading to a separate evaluation of the regression
function of (40) for the real and imaginary parts of bj2(p).

Conclusions

We show an approach to compute unknown parameters in a dynamical model
consisting of partial differential algebraic equations by a least squares data
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fit. The dynamical equations are discretized by the method of lines leading to
large system of ODEs or DAEs, respectively. Ordinary differential equations
and least squares problems can be solved by available standard codes.

The intention of the paper is to present a review on some techniques that are
routinely used to estimate data in dynamical systems. The model structure is
very flexible and covers a broad and realistic domain. Some real life applica-
tions are included, which reflect typical situations in industry and academia.
The complexity of practical mathematical models is illustrated and numerical
results are included. They show that unknown parameters of realistic dynam-
ical systems can be estimated more or less routinely by available standard
algorithms.
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