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We consider an approach to determine parameters in a system of one-dimensional time-dependent

parabolic differential equations and coupled ordinary differential equations. The model allows

transmission conditions between separate integration areas for functions and derivatives. Pro-

ceeding from given experimental data, e.g. observation times and measurements, the minimum

least squares distance of the measured data from the solution of the dynsmical system at des-

ignated space values is to be computed. The method of lines is used to discretize the partial

differential equation with respect to polynomials of arbitrary odd order, and to transform the

original system into a sequence of ordinary differential equations, that can be solved then by any

available ODE-solver. Numerical test results are included to show the efficiency of different ODE

solvers and optimization routines based on a collection of 20 test models.

KEY WORDS: least squares optimization, nonlinear programming, data fitting, partial differen-
tial equations, line method

1 INTRODUCTION

Parameter estimation plays an important role in many natural science and other
disciplines. The key idea is to estimate unknown parameters in a mathematical
model that describes the real life situation, by minimizing the distance of some
known experimental data from the theoretical model data. Thus also model pa-
rameters that cannot be measured directly can be estimated by a least squares fit
and analysed subsequently.
The purpose of this paper is to describe an algorithmic approach to fit data in

a dynamical system. The model functions define one-dimensional time-dependent
partial differential equations e.g. of parabolic type. In addition there may be
coupled ordinary differential equations with initial values. The model allows ar-
bitrary transition conditions between separate integration areas for functions and
derivatives. Thus also non-continuous or non-smooth transitions can be taken into
account. Moreover there may be any nonlinear equality and inequality constraints
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for the parameters to be estimated. In particular upper and lower bounds for the
parameters must be defined. The solution of the differential equation is inserted into
certain fitting criteria, yielding a least squares objective function of a mathematical
optimization problem that is to be solved numerically.

It is assumed that the model functions are differentiable with respect to the
parameters to be estimated. The unknown parameters to be estimated, are hidden
in right-hand side of the system equations, i.e. the partial or ordinary differential
equations, the intial values, the boundary or transition conditions, the constraints,
or the fitting criteria.

Only for illustration purposes we denote the independent model variable the
time variable of the system and the dependend data as measurement values of an
experiment. By this the probably most frequent application is described. On the
other hand, these terms may have any other meaning within a model depending on
the underlying application problem.

The mathematical model is described in Section 2 in more detail. The least
squares formulation is outlined and the mathematical structure of the partial dif-
ferential equation is described.

The partial differential equation is discretized by the method of lines, see e.g.
Schiesser 30, leading to a system of ordinary differential equations. Thus all tech-
niques we know from parameter identification in ordinary differential equations,
can be transferred to the solution of one-dimensional partial equations. The dis-
cretization procedure is outlined in Section 3.

For the integration of the resulting ordinary differential equation, several differ-
ent integration routines published by Hairer and Wanner17 have been taken into
account. Since the discretized systems have a tendancy to become stiff, the us-
age of implicit methods is highly recommended. A couple of alternative numerical
least squares optimization methods have been integrated into the system. They
are based on the Gauss-Newton method, but differ in algorithmic details. A brief
outline of their underlying strategies is also found in Section 3.

Some numerical test results to illustrate the performance of the numerical meth-
ods chosen, are presented in Section 4. For a simple heat equation the influence
of the differential equation solver is investigated. Then we show some comparative
results obtained by 20 different models w.r.t. the different optimization routines
implemented. Many of the test cases possess a practical background, and come
with real life experimental data. In some other cases measurement values are gen-
erated artificially to investigate also the question, whether a known solution can be
identified exactly. The corresponding partial differential equations are outlined in
an appendix.
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2 THE MATHEMATICAL MODEL

2.1 Least Squares Formulation

The basic mathematical model is a constrained nonlinear least squares problem,
i.e. the minimization of a sum of squares of nonlinear functions of the form

l∑
i=1

fi(p)2 , (1)

where p ∈ IRn has to satisfy constraints of the form

gj(p) = 0 , j = 1, . . . , me ,
gj(p) ≥ 0 , j = me + 1, . . . , m ,
pl ≤ p ≤ pu .

(2)

Here we assume that the parameter vector p is n-dimensional and that all non-
linear functions are continuously differentiable with respect to p.
All least squares parameter estimation algorithms proceed from the above for-

mulation, although in the one or other case different approaches are available to
define the objective functions and constraints within a FORTRAN subroutine. The
assumption, that all problem functions must be smooth, is required, since the more
efficient numerical algorithms in PDEFIT are based more or less on the Gauss-
Newton method, that requires at least first derivatives.
In the following we restrict all investigations to parameter estimation problems

where one vector-valued model function is available to compute the fitting crite-
ria with respect to an additional variable called time. We proceed now from r
measurement sets given in the form

(ti, yki ) , i = 1, . . . , s , k = 1, . . . , r , (3)

where s time values and rs corresponding measurement values are defined. Together
with a vector-valued model function

h(p, t) = (h1(p, t), . . . , hr(p, t))T , (4)

we get the above least squares formulation from

fj(p) = hk(p, ti)− yki ,

where j runs from 1 to rs in any order. Then the underlying idea is to minimize the
distance between the model function at certain time points and the corresponding
measurement values. The individual distances are denoted the residuals of the
problem. In the ideal case the residuals are zero indicating a perfect fit of the
model function to the measurements.
Since for practical applications additional weighting factors are highly useful, we

use instead the notation

fj(p) = wki (hk(p, ti)− yki ) (5)
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with suitable non-negative weighting factors wki .
Thus the resulting least squares function to be minimized is the sum of the

particular fj(p) for j = 1, . . . , rs, i.e.

f(p) =
r∑
k=1

s∑
i=1

(wki (hk(p, ti)− yki ))
2 (6)

2.2 The Partial Differential Equation

The next step is to outline, how the model function h(p, t) depends on the solution
of a system of ordinary differential equations obtained by discretizing a partial
differential equation.
First we assume without loss of generality, that the initial time is 0. This assump-

tion facilitates the description of the mathematical model and is easily satisfied in
practice by a suitable linear transformation of the time variable.
The model we want to investigate now, is defined by a system of np one-dimensio-

nal partial differential equations in one or more spatial intervals. A similar model
was investigated by Lang23. These intervals could describe e.g. certain areas with
different diffusion coefficients. They are given by the outer boundary values xL

and xR that define the total integration interval w.r.t. the space variable x, and
optionally some additional internal transition points xa1 , . . . , xana−1. Thus we get a
sequence of na + 1 boundary and transition points

xa0 := xL < xa1 < . . . < xana−1 < xana
:= xR . (7)

For each integration interval, we have to define a partial differential equation of
the form

uit = f i(x, t, v, ui, uix, u
i
xx, p) , i = 1, . . . na , (8)

where x ∈ IR is the spatial variable with xai−1 ≤ x ≤ xai for i = 1, . . . , na, t ∈ IR the
time variable with 0 < t ≤ ts, v ∈ IRno the solution vector of an optional coupled
system of ordinary differential equations, ui ∈ IRnp the system variable we want
to compute, and p ∈ IRn the parameter vector to be identified by an outer least
squares algorithm. ts is the final integration time, in general the last experimental
time value.

· · ·
xa0 xa1 xa2 xana−2 xana−1 xana

u1 u2 una−1 una

Any solution of the coupled system depends on the spatial variable x, the time
variable t, the parameter vector p, and is therefore written in the form v(t, p) and
ui(x, t, p) for i = 1, . . . , na.
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For any of both end points xL and xR we allow boundary conditions of the form

u1(xL, t, p) = uL(t, p)

una(xR, t, p) = uR(t, p)

u1
x(xL, t, p) = ûL(t, u1(xL, t, p), p)

una
x (xR, t, p) = ûR(t, una(xR, t, p), p)

(9)

for 0 < t ≤ ts with given functions uL(t, p), uR(t, p), ûL(t, u, p) and ûR(t, u, p). It is
essential to understand, that we do not require the evaluation of all boundary func-
tions. The user has to define an appropriate combination of boundary conditions,
so that the resulting PDE is well-defined and uniquely solvable.
Transmission conditions between the different areas may be defined in addition.

They are allowed at most at transition points and have the form

ui(xai , t, p) = cRi (t, u
i+1(xai , t, p), p)

ui+1(xai , t, p) = cLi (t, u
i(xai , t, p), p)

uix(x
a
i , t, p) = ĉRi (t, u

i+1(xai , t, p), u
i+1
x (xai , t, p), p)

ui+1
x (xai , t, p) = ĉLi (t, u

i(xai , t, p), u
i
x(x

a
i , t, p), p)

(10)

with 0 < t ≤ ts, i = 1, . . . , na−1 and given functions on the right-hand side. Again
the user may omit any of these functions, if a transition condition does not exist
at a given xai -value. To avoid internal access conflicts, either ui or ui+1 may be
defined, also either uix or ui+1

x , but never both at the same transition point.
Since the starting time is assumed to be zero, initial conditions must have the

form
ui(x, 0, p) = ui0(x, p) , i = 1, . . . , na (11)

and are defined for all x ∈ [
xai−1, xai

]
, i = 1, . . . , na. They may depend on the

parameters to be estimated.
If ordinary differential equations are to be coupled to the partial differential

equations, we proceed from an additional ODE system of the form

v̇j = Fj(t, v, uij (x, t, p), uijx (x, t, p), uijxx(x, t, p), p) (12)

for j = 1, . . . , no with initial values

v(0, p) = v0(p) (13)

that may depend again on the parameters to be estimated. The system has no
components, i.e. v = (v1, . . . , vno

)T . Coupling of ordinary differential equations
is allowed at any spatial point of the discrete system. The right-hand side of the
coupling equation may depend on the corresponding solution of the partial equation
and its first and second derivative w.r.t. the space variable at the point under
consideration.
To indicate that the fitting criteria hk(p, t) depend also on the solution of the dif-

ferential equation at any spatial points, where k denotes the index of a measurement
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set, we use the notation

hk(p, t) = ĥk(p, t, v(t, p), ui(x, t, p), uix(x, t, p), uixx(x, t, p)) (14)

and insert ĥk instead of hk into the least squares function(6). Again the fitting
criteria may depend on solution values at any spatial point w.r.t. an integration
interval defined by the index i and r denotes the number of measurement sets. The
fitting criterion may depend on the solution of the partial equation and its first and
second derivative w.r.t. the space variable at the actual spatial point.
In order to achieve smooth fitting criteria, we assume that all model functions

depend continuously differentiable on the parameter vector p. Moreover we assume
that the discretized system of differential equations is uniquely solvable for all p
with pl ≤ p ≤ pu.

3 NUMERICAL IMPLEMENTATION

3.1 The Discretization Scheme

The underlying idea is to transform the partial differential into a system of ordinary
differential equations by discretizing the model functions w.r.t. the spatial variable
x. This approach is known as the method of lines, see e.g. Schiesser30.
For the i-th integration interval of the spatial variable, we denote the number

of discretization points by ni, i = 1, . . . , na. We proceed from uniform grid points
within each interval and get a discretization of the whole space interval from xL to
xR.
Now we consider a single interval (xai−1, xai ). The internal equidistant discretiza-

tion points possess the form

xij := xai−1 + j · xai − xai−1

ni + 1
, (15)

for j = 1, . . . , ni. To approximate the first and second partial derivative of u(x, t, p)
w.r.t. the spatial variable at a given point xij , we compute a polynomial interpo-
lation subject to the neighbouring values u(xij1 , t, p), . . . , u(xij , t, p), . . . , u(xij2 , t, p).
Whenever possible, j1 < j and j2 > j are chosen, such that j remains in the center.
But when approaching the boundary of the integration interval, one has to shift
the interpolating interval in a straightforward way.
The number of interpolation points, i.e. j2 − j1+1, depends on the desired poly-

nomial degree as given by the user. The polynomials are computed by Newton’s
interpolation formula. The order is always even, since only an odd numbers of in-
terpolation points is allowed. We made this restriction to get uniformly distributed
grid points.
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Whenever a boundary condition in Dirichlet form

u1
k(xL, t, p) = uLk (t, p)

una

k (xR, t, p) = uRk (t, p)

uik(x
a
i , t, p) = cRi,k(t, u

i+1(xai , t, p), p)

uik(x
a
i−1, t, p) = cLi−1,k(t, u

i−1(xai−1, t, p), p)

(16)

is given for some 1 ≤ k ≤ np, see (9) or (10), respectively, then we know the value of
the boundary function and use it to interpolate the function u(x, t, p) as described
above. In other words the corresponding function value in the right-hand side of
the discretized system is replaced by the value given.
Alternatively a boundary condition may appear in the form

u1
k,x(xL, t, p) = ûLk (t, u

1(xL, t, p), p)

una

k,x(xR, t, p) = ûRk (t, u
na(xR, t, p), p)

uik,x(x
a
i , t, p) = ĉRi,k(t, u

i+1(xai , t, p), u
i+1
x (xai , t, p), p)

uik,x(x
a
i−1, t, p) = ĉLi−1,k(t, u

i−1(xai−1, t, p), ui−1
x (xai−1, t, p), p)

(17)

for some 1 ≤ k ≤ np, see (9) and (10). In this case the interpolating polynomial
at the boundary is computed by Hermite formula to exploit knowledge about the
known spatial derivative. Coupled ordinary differential equations are added to the
discretized system without any further modification.
When defining the transmission conditions, it is important to have the underly-

ing flux direction in mind. If, for example, the flux is in the direction of the spatial
variable and we want to define a continous transition at xai , then we have to formu-
late the corresponding transition function in the form ui+1

k (xai , t, p) = uik(x
a
i , t, p) in

order to guarantee, that the boundary values w.r.t. x are spread over the interval.
Since we use a uniform grid on each interval, it might be necessary to define

artificial transition points in order to get a grid refinement in a certain spatial area.
Smooth transitions are achieved in these cases, if function values and spatial deriva-
tive coincide, e.g. ui+1

k (xai , t, p) = uik(x
a
i , t, p) and uik,x(x

a
i , t, p) = ui+1

k,x (x
a
i , t, p) in

case of a flux from left to right.

3.2 Numerical Algorithms

Due to the practical importance of parameter estimation, very many numerical
codes were developed in the past and are available in form of software tools for
minimizing least squares functions. To solve parameter estimation in a flexible
way, four different optimization algorithms are taken into account for our imple-
mentation:

1. DFNLP: By transforming the original problem into a general nonlinear program-
ming problem in a special way, typical features of a Gauss-Newton and quasi-
Newton method are retained, see Schittkowski33. The resulting optimization
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problem is solved by a standard sequential quadratic programming code called
NLPQL, cf. Schittkowski32.

2. DN2GB: The subroutine is a frequently used unconstrained least squares algo-
rithm and was developed by Dennis, Gay and Welsh6 and is based also on a
Gauss-Newton and quasi-Newton approach.

3. NLSNIP: The code is a special purpose implementation for solving constrained
nonlinear least squares problems by a combination of Gauss-Newton, Newton
and quasi-Newton techniques, cf. Lindström24.

4. DSLMDF: The algorithm proceeds from successive line searches along the unit
vectors by comparing function values only. After a search cycle the Gauss-
Newton-type method DFNLP is executed with a limited number of iterations,
see Nickel27.

DFNLP and NLSNIP are capable to take additional linear or nonlinear con-
straints into account in form of equality or inequality restrictions. The codes
DN2GB and DSLMDF allow at least the definition of upper and lower bounds
for the variables.
The method of lines is used to discretize the partial differential equation with

respect to polynomials of arbitrary odd order, and to transform the original system
into a system of ordinary differential equations, that can be solved then by any
available ODE-solver. In the present case, it is possible to select a suitable algorithm
out of six different solvers:

1. DOPRI5: Explicit Runge-Kutta-method of Dormand and Prince9 with order 4/5
and step control, see Hairer, Nørsett and Wanner16

2. DOP853: Explicit Runge-Kutta-method of Dormand and Prince9 with order 8
and step control, see Hairer, Nørsett and Wanner16

3. ODEX: Extrapolation method based on GBS algorithm with variable order and
step size, see Hairer, Nørsett and Wanner16

4. RADAU5: Implicit Runge-Kutta-method of Radau-type with order 5, see Hairer
and Wanner17

5. SDIRK4: Diagonally implicit Runge-Kutta-method, see Hairer and Wanner17

6. SEULEX: Extrapolation method based on implicit Euler method with variable
order and step size control, see Hairer and Wanner17

The implicit methods RADAU5, SDIRK4 and SEULEX are capable to solve
stiff problems. Gradients of fitting functions with respect to the parameters are
approximated numerically.
The usage of the resulting computer program with name PDEFIT is outlined in

Dobmann and Schittkowski8. Basically PDEFIT is a FORTRAN subroutine, that
can be inserted into any other program, where the model functions must be defined
by a separate subroutine. To facilitate the usage, also a main program is available,
where the data, e.g. measurements, solution parameters, initial values, are read
in from a file. In the present version, gradients are evaluated numerically by the
forward difference formula.
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4 NUMERICAL TESTS

4.1 Test Environment

The numerical algorithm to estimate parameters in systems of partial differential
equations, was implemented in form of a FORTRAN code with name PDEFIT, see
Dobmann and Schittkowski8. Moreover an interactive user interface in form of a
database (MS-Access) running under Windows 3.11 and Windows 95 is available,
see Schittkowski34 for details. The system is called EASY-FIT and allows also pa-
rameter identification in explicit model functions, dynamical systems of nonlinear
equations, Laplace equations, ordinary differential equations and differential alge-
braic equations. A particular advantage of the system is, that model functions may
be defined either in form of FORTRAN code or in form of a FORTRAN-similar
modelling language called PCOMP, that allows in addition automatic differentia-
tion of nonlinear functions, see Dobmann, Liepelt and Schittkowski7.

All test runs have been performed under the EASY-FIT system on a PC running
under Windows 95 (Pentium processor with 120 MHz). The FORTRAN code was
compiled and linked by the Salford FTN77 compiler yielding a 32 bit executable
code. Nonlinear model functions are defined in the PCOMP syntax and are inter-
preted during run time.

The purpose of the numerical tests is to show that the proposed discretization
approach leads to an efficient solution method for the class of problems under
consideration. Moreover we want to compare parameter estimation methods for
some special real life and academic models.

The optimization routines are executed always with the same initial parameter
set although we know, that in the one or other case these tolerances can be adapted
to special situations leading to better individual results. For DFNLP we use the
termination tolerance 1.0E-7, for DN2GB we define 1.0E-5 for the relative function
and variable convergence. NLSNIP is executed with a tolerance of 1.0E-5 for the
main relative termination tolerances EPSREL, EPSX and EPSH, and 1.0E-3 for
the absolute stopping value EPSABS. The total number if iterations is bounded by
100 for all three algorithms. The code DSLMDF is not allowed to perform more
that 20 outer iteration cycles with a termination accuracy of 1.0E-5 for the local
search step performed by DFNLP. The search algorithm needs at most 5 function
evaluation for each line search with reduction factor of 2.0 and an initial steplength
of 0.2.

In some cases, we consider test examples used in the literature for simulation
purposes only. In these cases we define any appropriate constants to become the
optimization parameters to be estimated, and generate measurements by hand.
Starting from the constants given, we compute model function values w.r.t. a series
of predetermined time values, and round these numbers to two correct digits. Then
we define some arbitrary initial values and try to recalculate the known parameters.
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4.2 Testing the Influence of the ODE-Solver

We start with a very simple example, see e.g. Schiesser30. Consider Fourier’s first
law for heat conduction

ut = Duxx
for 0 < t ≤ 0.5 and 0 < x < 1 with boundary conditions

u(0, t) = u(1, t) = 0

for 0 ≤ t ≤ 0.5 and initial condition

u(x, 0) = sin
(πx

L

)

for 0 < x < 1. The partial differential equation is discretized w.r.t. 10 equidistant
intervals. Parameters to be estimated, are D and L, and we use u(0.5, t) as fitting
criterion. Measurements are simulated w.r.t. D = 1 and L = 1 at time coordinates
0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 and 0.5. Starting values are D = 0.01
and L = 2.
This academic example can be solved quite easily by all parameter estimation

algorithms and all integration routines that have been implemented in PDEFIT.
Thus we use the example to compare the efficiency of all possible combinations
of available ODE-solvers. For the test runs, we use ACCREL=ACCABS=1.0E-6
for the relative and absolute termination criteria and HINIT=1.0E-4 for the initial
stepsize of the integration routines executed. Numerical gradients are computed
w.r.t. the stepsize 1.0E-5 by forward differences.
In all cases, the computed optimal solution is reevaluated correctly subject to

4 correct digits and the residual is in the order of 0.1E-6. Table 1 contains the
following data:

method - parameter estimation method
solver - solution method for discretized system of ordinary differential

equations
nf - number of objective function evaluations
ng - number of gradient evaluations, i.e number of outer iterations
npde - Total number of all right-hand side evaluations of dicretized ODE-

system

The implicit ODE-solver RADAU5 is the fastest one w.r.t. number of function
evaluations and calculation time. The discretized ordinary differential equation
system is quite stable, since also the explicit solvers DOPRI5, DOP853 and ODEX
are applicable and work quite well. However they require more function calls than
the implicit methods. Also some of the parameter estimation codes, e.g. DN2BG,
are more sensitive w.r.t. the accuracy, by which the subproblem is solved, than
others. Especially the combined search algorithm DSLMDF is quite robust subject
to the accuracy in function and gradient values.
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method solver nf ng npde
DFNLPD RADAU5 10 8 5,397

SDIRK4 10 8 9,949
SEULEX 10 8 8,365
DOPRI5 10 8 11,888
DOP853 11 9 17,971
ODEX 11 9 26,106

DN2GB RADAU5 9 8 5,307
SDIRK4 35 11 19,304
SEULEX 11 10 10,186
DOPRI5 12 11 16,410
DOP853 13 11 23,986
ODEX 44 14 80,404

NLSNIP RADAU5 8 7 4,847
SDIRK4 8 7 8,851
SEULEX 8 7 7,390
DOPRI5 8 7 10,276
DOP853 8 7 14,344
ODEX 9 8 27,692

DSLMDF RADAU5 33 3 7,722
SDIRK4 33 3 14,160
SEULEX 33 3 11,603
DOPRI5 33 3 15,450
DOP853 33 3 21,488
ODEX 33 3 30,885

TABLE 1: Numerical results for heat equation
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name npar npde narea node ndisc nmeas nexp scale data
HEAT 2 1 1 0 11 1 11 0 S
RICHARDS 5 1 1 0 11 1 20 1 E
G WATER 5 2 1 0 21 1 82 1 E
SKIN 2A 10 2 2 4 11/11 4 19 1 E
SKIN 3A 10 3 3 4 7/5/7 4 19 1 E
KINETIC 10 1 3 6 7/5/7 3 15 1 E
NAG 1 3 2 1 0 11 2 38 0 S
NAG 2 2 1 2 0 11/11 1 23 0 S
NITROGEN 3 2 1 0 11 2 20 0 S
CONTAMIN 3 4 1 4 11 4 24 0 E
MILL 5 1 1 0 11 1 40 1 S
DISRET 2 2 1 0 11 2 38 0 S
SHEAR 4 3 1 0 21 3 33 0 S
EL DYN 3 2 1 0 11 2 20 0 S
HOT SPOT 3 1 1 0 21 1 11 0 S
WAVES 3 2 1 0 29 10 50 0 S
FLAME 2 2 1 0 11 5 15 0 S
BRUSSEL 3 2 1 0 21 12 120 0 S
POLLUTN 8 4 1 0 11 4 28 1 S
INTEG 3 1 1 0 21 5 25 1 S

TABLE 2: Test examples (review)

4.3 Testing the Efficiency of Parameter Estimation Algorithms

We select a number of test cases, where most models possess a practical background
and where some of them possess real life experimental data. Some basic features
are summarized in Table 2 using the notation

name - test problem name as used in subsequent tables
npar - number of parameters to be estimated
npde - number of PDE’s
narea - number of integration areas
node - number of coupled ODE’s
ndisc - number of discretization points
nmeas - number of measurement sets
nexp - total number of experimental data
scale - scaling procedure (0 - none, 1 - division by sum of squared mea-

surement values)
data - type of experimental data (S - simulation, E - experiment)

The intention is to compare the performance of optimization codes. Thus we
integrate the differential equations always with the same solver RADAU5 and the
same stopping tolerances ACCREL=ACCABS=1.0E-6 and HINIT=1.0E-4. Nu-
merical gradients are computed w.r.t. the stepsize 1.0E-5 by forward differences.
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Therefore the numerical results give an impression, how a parameter estimation
problem based on a one-dimensional PDE can be solved by the very first approach.
Table 3 contains the numerical results achieved, where we use the following no-

tation:
name - test problem name
code - name of least squares algorithm used
tr - termination reason

0 : stopping conditions satisfied
1 : maximum number of iterations reached
2 : error message of least squares algorithm
3 : error message of ODE solver

residual - final residual value, i.e. sum of squared deviations (scaled in some
cases)

nf - number of function evaluations
ng - number of gradient evaluations or number of iterations,

respectively
tcalc - calculation time in min

Note that the calculation time could be reduced significantly by using FORTRAN
code for the nonlinear model functions. But in this case we prefer the interpretation
of the model functions in the PCOMP language, see Section 4.1.
In some cases the algorithms compute different answers. Especially for problems

with real life data, the final convergence speed is sometimes low probably because
of large errors in the measurements. Either an existing local minimizer is approxi-
mated or the stopping tolerance is not sufficiently small in these cases. More details
are found in the appendix.
To summarize the results, see Table 4, we present the number of test cases where

an algorithm got the least residual subject to two significant digits. Moreover we
show the number of runs where an algorithm performed best subject to number of
function and gradient evaluations and subject to calculation time. Here we compare
only those algorithms that achieved the lowest residual w.r.t. one significant digit.
Although the number of test examples if by far too low to get statistically relevant

results, we get the impression that the codes DN2GB of Dennis, Gay and Welsh6

and NLSNIP of Lindström24 behave best w.r.t. reliability and efficiency. However
none of the four codes tested was able to solve all problems w.r.t. the required
accuracy. Thus it must be expected that the practical solution of a parameter
estimation problem based on a partial differential equation, consists of a stepwise
adaption of the algorithm, model and data, until a solution is obtained. Surprisingly
the heuristic combined search method as implemented in the code DSLMDF, works
quite satisfactorily.

5 CONCLUSION

We combine well-known algorithms for least squares optimization and ordinary
differential equations to estimate parameters in partial differential equations of
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name code tr residual nf ng tcalc

HEAT DFNLP 0 0.21E-6 10 8 0:33
DN2GB 0 0.16E-6 9 8 0:22
NLSNIP 0 0.16E-6 8 7 0:18
DSLMDF 0 0.16E-6 33 3 0:18

RICHARDS DFNLP 0 0.0058 64 28 6 9:27
DN2GB 3 - - - -
NLSNIP 3 - - - -
DSLMDF 3 - - - -

G WATER DFNLP 0 0.014 21 4 3:20
DN2GB 0 0.017 60 22 13:19
NLSNIP 0 0.015 22 4 3:33
DSLMDF 1 0.013 3,468 291 418:20

SKIN 2A DFNLP 0 0.0015 43 34 13:01
DN2GB 1 0.00079 181 101 50:20
NLSNIP 0 0.0015 44 19 8:10
DSLMDF 0 0.0013 374 22 22:10

SKIN 3A DFNLP 0 0.0031 23 21 8:00
DN2GB 1 0.0049 176 101 59:30
NLSNIP 0 0.0055 23 9 4:16
DSLMDF 0 0.0031 190 4 7:30

KINETIC DFNLP 2 - - - -
DN2GB 0 0.039 18 13 17:30
NLSNIP 3 - - - -
DSLMDF 0 0.063 340 19 26:10

NAG 1 DFNLP 0 0.14E-5 13 11 3:42
DN2GB 0 0.14E-5 8 7 2:26
NLSNIP 0 0.14E-5 8 7 2:22
DSLMDF 0 0.15E-5 73 6 6:27

NAG 2 DFNLP 0 0.97E-4 39 35 6:57
DN2GB 0 0.97E-4 33 25 4:50
NLSNIP 0 0.97E-4 11 11 2:00
DSLMDF 0 0.84E-3 51 4 2:31

NITROGEN DFNLP 0 0.11E-3 42 40 9:26
DN2GB 0 0.41E-5 56 23 8:44
NLSNIP 0 0.41E-5 19 19 8:55
DSLMDF 0 0.15E-2 67 1 4:12

CONTAMIN DFNLP 0 0.0045 68 50 7:70
DN2GB 0 0.0045 9 8 1:12
NLSNIP 0 0.0045 21 15 1:39
DSLMDF 0 0.0046 85 3 2:35

TABLE 3: Comparative results (continued)
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name code tr residual nf ng tcalc

MILL DFNLP 0 0.14E-6 5 3 1:57
DN2GB 0 0.14E-6 30 11 7:22
NLSNIP 0 0.14E-6 19 6 4:26
DSLMDF 0 0.12E-5 60 1 6:42

DISRET DFNLP 0 0.00021 42 29 8:51
DN2GB 0 0.00021 20 13 2:10
NLSNIP 0 0.00021 16 10 2:14
DSLMDF 2 - - - -

SHEAR DFNLP 0 0.13 25 8 40:00
DN2GB 0 0.052 41 14 63:50
NLSNIP 0 0.045 41 15 54:40
DSLMDF 0 0.042 127 20 183:10

EL DYN DFNLP 0 0.85E-6 21 19 5:18
DN2GB 0 0.82E-6 12 10 2:59
NLSNIP 0 0.82E-6 26 12 3:46
DSLMDF 0 0.83E-6 75 3 4:18

HOT SPOT DFNLP 0 0.57E-4 83 60 18:20
DN2GB 0 0.58E-4 76 52 13:57
NLSNIP 0 0.58E-4 101 55 15:91
DSLMDF 0 0.58E-4 311 33 24:40

WAVES DFNLP 0 0.35E-4 74 52 24:50
DN2GB 0 0.35E-4 19 15 8:16
NLSNIP 3 - - - -
DSLMDF 0 0.35E-4 45 5 9:19

FLAME DFNLP 0 0.68E-6 16 12 7:15
DN2GB 0 0.66E-6 10 8 4:23
NLSNIP 0 0.66E-6 7 7 3:44
DSLMDF 0 0.20E-5 23 4 4:54

BRUSSEL DFNLP 0 0.52E-3 40 31 220:00
DN2GB 0 0.52E-3 19 16 79:10
NLSNIP 0 0.52E-3 26 20 124:10
DSLMDF 0 0.52E-3 125 10 146:40

POLLUTN DFNLP 0 0.60E-5 93 65 246:40
DN2GB 0 0.50E-5 46 21 56:30
NLSNIP 0 0.55E-5 31 18 44:50
DSLMDF 0 0.45E-4 324 8 137:10

INTEG DFNLP 0 0.46E-5 79 50 9:26
DN2GB 0 0.45E-5 15 14 1:19
NLSNIP 0 0.45E-5 67 45 11:38
DSLMDF 0 0.45E-5 116 20 6:56

TABLE 3: Comparative results
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code residualbest nbestf nbestg tbestcalc

DFNLP 11 4 2 3
DN2GB 15 9 3 10
NLSNIP 11 8 7 6
DSLMDF 6 0 9 2

TABLE 4: Summary of performance results

parabolic type. The one-dimensional system is transformed into a sequence of
ordinary differential equations by the method of lines. The model allows coupled
ordinary differential equations and transmission conditions between different areas.
The numerical implementation is outlined and test results are presented based on
a collection of test examples. Some of them are obtained by real life models where
experimental data are available.
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6 APPENDIX: TEST EXAMPLES

All test problems are described in the same format. We give a short introduction
into the background and describe the mathematical model in detail.
For the parameters to be estimated, we show the initial values p0 from where the

optimization algorithms are started, the final solution pmethod obtained by one or
several least squares codes, and the exact one p�, if measurements are simulated
proceeding from a given set of parameters. The last line shows the corresponding
residual, scaled for some test cases.
Moreover we present all experimental data for completeness. If measurements

are simulated, we outline only the time values used for a simulation run by which
the data have been computed. These data are rounded w.r.t. two exact digits.

6.1 HEAT

1. Background: Simple test example describing a heat diffusion process with con-
stant diffusion parameter, see e.g. Schiesser30 (Fourier’s first law for heat con-
duction).

2. System equations:
ut(x, t) = Duxx(x, t)

for 0 < t ≤ 0.5, 0 < x < 1
3. Initial conditions:

u(x, 0) = sin
(πx

L

)
for 0 < x < 1

4. Boundary conditions: u(0, t) = u(1, t) = 0 for 0 ≤ t ≤ 0.5
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5. Coupled ODE’s: none
6. Transmission conditions: none
7. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF p�

D 0.01 1.0007 1.0007 1.0006 1.0006 1.0
L 2.0 1.0012 1.0010 1.0010 1.0010 1.0

res 3.4 0.16E-6 0.16E-6 0.16E-6 0.16E-6 0.21E-6

8. Fitting criterion: u(0.5, t) for 0 < t ≤ 0.5
9. Measurements: Simulated at time coordinates 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3,

0.35, 0.4, 0.45 and 0.5.

6.2 RICHARDS

1. Background: Vertical diffusion of water in soil, modelled by Richards equation,
see e.g. Hartge and Horn18.

2. Remarks: The resulting ODE is very unstable in the sense, that the equation
cannot be integrated when using an inappropriate set of inital parameters. Also
some of the least squares algorithms are terminated because of numerical diffi-
culties reported by the ODE solver. There is no exact fit of the data indicating
that something is wrong with the model, the data or the link between model and
data, e.g. the dimension. Although the residual is reduced from 0.12 to 0.0058,
the initial parameters are changed only very slightly.

3. System equations:

∂

∂t
θ(u(x, t)) =

∂

∂z
(K(u(x, t))ux(x, t)) +

∂

∂x
K(u(x, t))

with

θ(u) =
{

θr + (θs − θr)(1 + (−αu)n)1/n−1 if u < 0
θs otherwise

and

K(u) = Ks(1 + (−αu)n)(1/n−1)/2(1− (−αu))n(1 + (−αu)n)1/n−1)2

if u < 0, and K(u) = Ks otherwise, for 0 < t, 15 < x < 55
4. Initial conditions: Linear interpolation of the data

xi u(xi, 0)
15.0 -14.8941
40.0 -12.4942
70.0 -11.6868

see Gaßner14

5. Boundary conditions: Linear interpolated data for u at left and right bound-
ary, see Table 5 or Gaßner14.



A 20

6. Coupled ODE’s: none
7. Transmission conditions: none
8. Estimated parameters:

p p0 pDFNLP

θr 0.25 0.227
θs 0.4 0.408
α 0.1 0.00912
n 7.1 7.129

Ks 30.0 29.98
res 0.12 0.0058

9. Fitting criterion: u(40, t) for 0 < t

10. Measurements: See Gaßner14

ti yi
0.166 -13.741
0.333 -14.241
0.499 -14.991
0.666 -15.741
0.833 -16.488
0.999 -17.241
1.166 -17.491
1.332 -18.241
1.499 -18.741
1.666 -19.491

ti yi
1.833 -19.991
1.999 -20.241
2.166 -20.744
2.333 -20.994
2.499 -21.494
2.666 -21.997
2.833 -22.247
2.999 -22.497
3.166 -22.747
3.333 -23.250

6.3 G WATER

1. Background: Tracer experiment to investigate acidification of groundwater pol-
lution, see Andersson and Olsson2 or Hoch21.

2. Remarks: The initial parameters are quite close to the optimal ones, since they
are altered only very slightly and the scaled total residual is reduced from 0.036
to 0.014. The search method DSLMDF computed the best fit, however with a
very large number of function evaluations.

3. System equations:

θm
∂cm
∂t

(x, t) + θim
∂cim
∂t

(x, t) = θmDm
∂2cm
∂x2

(x, t)− θmVm
∂cm
∂x

(x, t)

θim
∂cim
∂t

(x, t) = α (cm(x, t)− cim(x, t))

for 0 < t ≤ 2.55, 0 < x < 80, see Van Genuchten and Wierenga41

4. Initial conditions: cm(x, 0) = 0, cim(x, 0) = 0 for 0 < x < 80
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ti u(15, ti)
0.0000 -14.8941
0.1661 -15.4185
0.3327 -15.9429
0.4994 -16.4673
0.6661 -16.9755
0.8327 -17.5000
0.9994 -17.7745
1.1661 -18.2908
1.3327 -18.5654
1.4991 -18.8399
1.6661 -19.1063
1.8327 -19.3645
1.9994 -19.8891
2.1661 -20.1556
2.3327 -20.4220
2.4994 -20.7048
2.6661 -20.9631
2.8327 -21.2295
2.9994 -21.4960
3.1661 -21.5124
3.3327 -21.7871
3.4991 -22.0454
3.6661 -22.3201
3.8327 -22.3365
3.9994 -22.6030
4.1661 -22.8778
4.3327 -22.8860
4.4994 -23.4109
4.6661 -23.6692
4.8327 -23.9358

ti u(55, ti)
0.0000 -11.6868
0.1661 -12.4372
0.3324 -12.9375
0.4991 -13.6780
0.6658 -13.9281
0.8325 -14.6686
0.9991 -14.9287
1.1658 -15.6790
1.3324 -15.9192
1.4991 -16.1693
1.6661 -16.4195
1.8327 -17.1598
1.9994 -17.1598
2.1661 -17.4100
2.3325 -17.6601
2.4991 -17.9102
2.6658 -18.1503
2.8324 -18.4104
2.9991 -18.6505
3.1658 -18.6505
3.3324 -19.4008
3.4991 -19.4008
3.6661 -19.3908
3.8327 -19.6409
3.9994 -19.6409
4.1661 -19.8910
4.3327 -20.1411
4.4991 -20.1310
4.6658 -20.3811
4.8324 -20.3811

TABLE 5: Boundary values for RICHARDS
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5. Boundary conditions:

cm(0, t)− Dm
Vm

∂cm
∂x

(0, t) =
{
5800, if t < 0.01042;
0, otherwise.

cm(80, t) +
Dm
Vm

∂cm
∂x

(80, t) = 0

for 0 ≤ t ≤ 2.55
6. Coupled ODE’s: none
7. Transmission conditions: none
8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF

Vm 70.0 70.1 55.8 78.5 134.7
Dm 270.0 270.0 394.8 280.8 130.8
α 0.8 0.807 1.418 0.704 0.145
θm 0.16 0.109 0.138 0.0885 0.00960
θim 0.17 0.136 0.121 0.134 0.306
res 0.036 0.014 0.017 0.015 0.013

9. Fitting criterion:

h(t) = cm(40, t)− Dm
Vm

∂cm
∂x

(40, t)

for 0 < t ≤ 2.55
10. Measurements: See Table 6, Andersson and Olsson2 or Hoch21

6.4 SKIN 2A

1. Background: In vitro experiment with two membranes to describe the diffusion
of a substance through human skin and the generation of a metabolite, see Wolf43,
Wolf and Lee44, and Schittkowski, Dobmann and Wolf35.

2. Remarks: Although we start from a continuous transition, the algorithm com-
putes a non-continuous transmission. Very probably the system is overdeter-
mined because of 10 parameters to be estimated.

3. System equations:

ust (x, t) = Ds
1usxx(x, t)− Vmaxu

s(x, t)/(Km + us(x, t))

umt (x, t) = Dm
1 umxx(x, t) + Vmaxu

s(x, t)/(Km + us(x, t))

for 0 ≤ x ≤ l1, 0 ≤ t ≤ T , with Michaelis-Menten-effect, see Hotchkiss20, Pratt
and Taylor31,

ust (x, t) = Ds
2usxx(x, t)

umt (x, t) = Dm
2 umxx(x, t)
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ti yi
0,11 17.80
0,12 0.66
0.15 11.58
0.18 9.54
0.24 32.09
0.27 23.47
0.30 28.30
0.33 29.42
0.36 32.61
0.39 33.16
0.42 34.46
0.45 36.54
0.48 38.34
0.51 40.30
0.54 41.23
0.57 41.57
0.60 40.97
0.63 41.98
0.66 43.71
0.69 45.45
0.72 44.43
0.75 40.39
0.78 43.19
0.81 43.04
0.84 41.13
0.87 40.13
0.90 40.01
0.93 38.87
0.96 39.95
0.99 37.19
1.02 37.10
1.05 39.11
1.08 39.42
1.11 34.03
1.14 31.62
1.17 34.80
1.20 35.88
1.23 34.30
1.26 31.73
1.29 30.36
1.32 29.90

ti yi
1.35 29.31
1.38 28.40
1.41 27.32
1.44 26.13
1.47 23.95
1.50 22.40
1.53 23.33
1.56 19.56
1.59 15.85
1.62 22.93
1.65 22.10
1.68 19.60
1.71 20.71
1.74 20.45
1.77 19.42
1.80 18.14
1.83 17.48
1.86 17.29
1.89 17.69
1.92 18.41
1.95 18.27
1.98 17.61
2.01 16.57
2.04 15.29
2.07 13.88
2.10 12.53
2.13 11.38
2.16 10.92
2.19 10.82
2.22 10.75
2.25 10.20
2.28 9.53
2.31 8.80
2.34 8.10
2.37 7.44
2.40 6.92
2.43 6.56
2.46 6.25
2.49 5.96
2.52 5.62
2.55 5.21

TABLE 6: Experimental data for G WATER
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for l1 ≤ x ≤ l, 0 ≤ t ≤ T , where l = 0.01, l1 = 0.005, Km = 0.007 and T = 30,
see also Wolf43, Wolf and Lee44

4. Initial conditions: us(x, 0) = 0, um(x, 0) = 0 for x > 0 and us(0, 0) = Y0P s/Va,
um(0, 0) = 0 otherwise, with Va = 3000

5. Boundary conditions:

us(0, t) = P s/Vav
s(t)

um(0, t) = Pm/Vau
m(t)

us(l, t) = P s/Vau
s(t)

um(l, t) = Pm/Vau
m(t)

for 0 ≤ t ≤ T

6. Coupled ODE’s:

v̇s(t) = P s/VaFaD
susx(0, t)

v̇m(t) = Pm/VaFaD
mumx (0, t)

ẇs(t) = −P s/VaFaD
susx(l, t)

ẇm(t) = −Pm/VaFaD
mumx (l, t)

for 0 ≤ t ≤ T , where vs(0) = Y0, vm(0) = 0, ws(0) = 0, wm(0) = 0, Fa = 63.6
7. Transmission conditions:

usx(l
−
1 , t) = T susx(l

+
1 , t)

umx (l
−
1 , t) = Tmumx (l

+
1 , t)

usx(l
+
1 , t) = Ds

2/Ds
1usx(l

−
1 , t)

umx (l
+
1 , t) = Dm

2 /Dm
1 umx (l

−
1 , t)

for 0 ≤ t ≤ T

8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF

Ds
1 0.01 0.0400 0.00258 0.0423 0.0155

Dm
1 1.0 0.573 1.571 1.93 6.230

Ds
2 1.0 2.83 80.57 2.00 975.8

Dm
2 1.0 1.38 3.753 2.59 2.328

P s 0.05 0.029 0.459 0.0289 0.0734
Pm 0.001 0.0039 0.0139 0.000965 0.000206

Vmax 35.0 34.9 4.661 35.0 16.41
Y0 109.0 106.3 106.3 106.4 106.5
T s 1.0 0.244 0.322 0.234 0.274
Tm 1.0 1.22 0.529 2.07 9.07
res 0.93 0.0015 0.00079 0.0015 0.0013

9. Fitting criteria: vs(t), vm(t), ws(t), wm(t) for 0 ≤ t ≤ T
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10. Measurements:

ti y1
i y2

i y3
i y4

i

0.0 107 - - -
2.0 105 0.8 0.6 0.3
5.0 102 2.2 1.4 0.8
7.0 99 3.0 1.9 1.0
10.0 97 4.5 2.5 1.8
20.0 89 8.9 4.0 3.9
30.0 81 13.1 5.0 6.2

cf. Steinsträsser38

6.5 SKIN 3A

1. Background: Same experiment as for SKIN 2A, but with full modelling of
smooth transition between areas.

2. Remarks: The transition between two different diffusion areas is modelled in
detail. Very probably the system is overdetermined because of 10 parameters to
be estimated.

3. System equations:

ust (x, t) = Ds
1usxx(x, t)− Vmaxu

s(x, t)/(Km + us(x, t))

umt (x, t) = Dm
1 umxx(x, t) + Vmaxu

s(x, t)/(Km + us(x, t))

for 0 ≤ x ≤ l1, 0 ≤ t ≤ T ,

ust (x, t) =
(

Ds
1 +

Ds
2−Ds

1
l2−l1 (x − l1)

)
(µsusx(x, t) + usxx(x, t))

+Ds
2−Ds

1
l2−l1 (µsus(x, t) + usx(x, t))

umt (x, t) =
(

Dm
1 + Dm

2 −Dm
1

l2−l1 (x − l1)
)
(µmumx (x, t) + umxx(x, t))

+Dm
2 −Dm

1
l2−l1 (µmum(x, t) + umx (x, t))

for l1 ≤ x ≤ l2, 0 ≤ t ≤ T ,

ust (x, t) = Ds
2usxx(x, t)

umt (x, t) = Dm
2 umxx(x, t)

for l2 ≤ x ≤ l, 0 ≤ t ≤ T , where l = 0.01, l1 = 0.0045, l2 = 0.0055, Km = 0.007,
and T = 30, see Schittkowski, Dobmann and Wolf35 or Wolf43

4. Initial conditions: us(x, 0) = 0, um(x, 0) = 0 for x > 0 and us(0, 0) = Y0P s/Va,
um(0, 0) = 0 otherwise

5. Boundary conditions:
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us(0, t) = P s/Vav
s(t)

um(0, t) = Pm/Vau
m(t)

us(l, t) = P s/Vau
s(t)

um(l, t) = Pm/Vau
m(t)

for 0 ≤ t ≤ T , Va = 3000

6. Coupled ODE’s:

v̇s(t) = P s/VaFaD
susx(0, t)

v̇m(t) = Pm/VaFaD
mumx (0, t)

ẇs(t) = −P s/VaFaD
susx(l, t)

ẇm(t) = −Pm/VaFaD
mumx (l, t)

for 0 ≤ t ≤ T , where vs(0) = Y0, vm(0) = 0, ws(0) = 0, wm(0) = 0, Fa = 63.6

7. Transmission conditions:
Smooth transition functions, i.e.

usx(l
−
1 , t) = usx(l

+
1 , t)

umx (l
−
1 , t) = umx (l

+
1 , t)

usx(l
+
1 , t) = usx(l

−
1 , t)

umx (l
+
1 , t) = umx (l

−
1 , t)

for 0 ≤ t ≤ T

8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF

Ds
1 0.01 0.0094 0.0022 0.00460 0.00941

Dm
1 1.0 0.354 0.0344 0.137 0.324

Ds
2 1.0 0.723 14.96 0.334 0.720

Dm
2 1.0 1.605 2.121 0.933 1.461

P s 0.05 0.0519 0.094 0.104 0.0520
Pm 0.001 0.0090 0.0 0.00621 0.0099

Vmax 35.0 34.99 47.22 17.73 34.94
Y0 109.0 104.3 102.9 105.7 104.2
µs 0.0 -0.361 110.7 0.0 -0.367
µm 0.0 0.0831 -661.6 0.0 0.128
res 0.42 0.0031 0.0049 0.0055 0.0031

9. Fitting criteria: vs(t), vm(t), ws(t), wm(t) for 0 ≤ t ≤ T

10. Measurements:
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ti y1
i y2

i y3
i y4

i

0.0 107 - - -
2.0 105 0.8 0.6 0.3
5.0 102 2.2 1.4 0.8
7.0 99 3.0 1.9 1.0
10.0 97 4.5 2.5 1.8
20.0 89 8.9 4.0 3.9
30.0 81 13.1 5.0 6.2

cf. Steinsträsser38

6.6 KINETIC

1. Background: Diffusion of a substance through skin with additional kinetic
model for systemic cycle, see Wolf43, without metabolism.

2. Remarks: The transition between two different diffusion areas is modelled in
detail. Ordinary differential equations are coupled at both boundaries. Very
probably the system is overdetermined, since 10 parameters are to be estimated
and only 15 measurements are available.

3. System equations:

ut(x, t) = D1uxx(x, t)

for 0 ≤ x ≤ l1, 0 ≤ t ≤ T ,

ut(x, t) =
∂

∂x

(
(D1 +

D2 − D1

l2 − l1
(x − l1))(µu(x, t) + ux(x, t))

)

for l1 ≤ x ≤ l2, 0 ≤ t ≤ T ,

ut(x, t) = D2uxx(x, t)

for l2 ≤ x ≤ l, 0 ≤ t ≤ T , where l = 0.21, l1 = 0.1, l2 = 0.11, µ = −50, D0 = 12,
and T = 6

4. Initial conditions: u(x, 0) = 0 for 0 ≤ x ≤ l

5. Boundary conditions:

u(0, t) = y1(t)/V1

u(l, t) = y4(t)/V4

for 0 ≤ t ≤ T , where V1 = 0.1 and V4 = 1

6. Coupled ODE’s:
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ẏ1(t) = D0k exp(−kt)− (k12 + k13)y1(t) + k31y3(t) + FaD1ux(0, t)

ẏ2(t) = −k12y1(t)

ẏ3(t) = k13y1(t)− k31y3(t)

ẏ4(t) = −k45y4(t) + k54y5(t)− FaD2ux(0, t)− kp(r0 − c(t))y4(t) + kmc(t)V4

ẏ5(t) = −k54y5(t) + k45y4(t)− FaD2ux(l, t)

ċ(t) = kp(r0 − c(t))y4(t)/V4 − kmc(t)

for 0 ≤ t ≤ T , where y1(0) = 0, y2(0) = 0, y3(0) = 0, y4(0) = 0, y5(0) = 0,
c(0) = 0, Fa = 0.5, r0 = 160

7. Transmission conditions:
Continuous transition functions, i.e.

u(l+1 , t) = u(l−1 , t)

u(l−2 , t) = u(l+2 , t)

ux(l−1 , t) = µu(l+1 , t) + ux(l+1 , t)

ux(l+2 , t) = µu(l−2 , t) + ux(l−2 , t)

for 0 ≤ t ≤ T

8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF

k 50.0 - 3315.7 - 0.925
k12 0.0 - 4.84 - 0.0
k13 6.0 - 15.47 - 10.90
k31 0.5 - 1.04 - 0.295
k45 0.0 - 0.497 - 7.85
k54 1.0 - 1.82 - 3.67
D1 0.001 - 0.00065 - 0.175
D2 1.0 - 0.726 - 0.513
kp 0.01 - 0.0602 - 0.0561
km 0.01 - 0.113 - 0.0
res 0.34E+5 - 0.039 - 0.063

9. Fitting criteria: y1(t)/V1, y4(t)/V4, y5(t)/V5 for 0 ≤ t ≤ T , where V5 = 5

10. Measurements:

ti y1
i y2

i y3
i

0.5 4.72 0.94 0.38
1.0 3.06 1.0 0.62
2.0 2.34 0.72 0.39
4.0 1.77 0.26 0.25
6.0 1.69 0.0 0.06
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6.7 NAG 1

1. Background: Test problem for subroutine D03PBF of NAG-Library with some
applications in electrodynamics, see NAG45.

2. Remarks: The parameter estimation problem is solved easily by all algorithms.
3. System equations:

ut(x, t) = auxx(x, t)− f(c(u(x, t)− v(x, t)))
vt(x, t) = bvxx(x, t) + f(c(u(x, t)− v(x, t)))

for t > 0 and 0 < x < 1, where f(z) = exp(z)− exp(−2z)
4. Initial conditions: u(x, 0) = 1 and v(x, 0) = 0 for 0 < x < 1
5. Boundary conditions: ux(0, t) = 0, v(0, t) = 0, u(1, t) = 1, vx(1, t) = 0 for

t > 0
6. Coupled ODE’s: none
7. Transmission conditions: none
8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF p�

a 1.0 0.02392 0.02393 0.02393 0.0238 0.024
b 1.0 0.1698 0.1699 0.1699 0.1696 0.17
c 1.0 5.728 5.728 5.728 5.725 5.73

res 6.6 0.14E-5 0.14E-5 0.14E-5 0.15E-5 0.15E-5

9. Fitting criteria: u(0, t) and v(1, t) for 0 < t ≤ 0.5
10. Measurements: Simulated at 19 time coordinates 0, 0.1, 0.2, 0.3, . . ., 1, 1.5, 2,

2.5, . . ., 0.45, 0.5.

6.8 NAG 2

1. Background: Test problem for subroutine D03PBF of NAG-Library with in-
terface, see NAG45.

2. Remarks: Starting values for the parameters to be estimated, are far away
from the optimal ones. Although the resulting least squares problem is difficult
to solve, parameters are identified more or less correctly.

3. System equations:

ut(x, t) = a(2ux(x, t)/x + uxx(x, t))− b exp(u(x, t))

for t > 0 and 0 < x < 0.5,

ut(x, t) = (2ux(x, t)/x + uxx(x, t))− exp(u(x, t))

for t > 0 and 0.5 ≤ x < 1
4. Initial conditions: u(x, 0) = 0 for x < 1 and u(1, 0) = 1 otherwise
5. Boundary conditions: ux(0, t) = 0, u(1, t) = 1 for t > 0
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6. Coupled ODE’s: none

7. Transmission conditions: ux(0.5+, t) = aux(0.5−, t) for all t > 0

8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF p�

a 1.0 5.29 5.30 5.30 9.97 5.0
b 1.0 987.6 987.6 987.6 890.0 1000.0

res 169.3 0.97E-4 0.97E-4 0.97E-4 0.25E-2 0.10E-3

9. Fitting criterion: u(0.5, t) for t > 0

10. Measurements: Simulated at 23 time coordinates 0.01, 0.02, . . ., 0.12, 0.13,
0.15, 0.2, 0.3, . . ., 0.9, 1

6.9 NITROGEN

1. Background: Nitrogen and ammonium dynamics in forrest soils, see Caassen,
Barber5 and Fischer12.

2. Remarks: Starting values for the parameters to be estimated, are far away from
the optimal ones. Thus the resulting least squares problem is difficult to solve,
and none of the algorithms is able to identify parameters correctly.

3. System equations:

ut(x, t) = (Duxx(x, t)− 70ux(x, t)− m1L(t)u(x, t))
+1.387(r(t)− v(x, t)))/1.216

vt(x, t) = (Dvxx(x, t)− 70vx(x, t)− m2L(t)v(x, t)) + 1.387u(x, t))/3.8

for t > 0 and 0 < x < 1, where r(t) = 4.5 exp(−1.387t) and

L(t) = 0.000172 exp(5t/(6t + 1)) + 0.0008 exp(18t/(13t + 30))

4. Initial conditions: u(x, 0) = 1, v(x, 0) = 0.5 for 0 ≤ x ≤ 1

5. Boundary conditions:

ux(0, t) = (15.79u(0, t)− 15.84)/D
ux(1, t) = 0
vx(0, t) = (15.79v(0, t)− 7.921)/D
vx(1, t) = 0

for all t > 0

6. Coupled ODE’s: none

7. Transmission conditions: none

8. Estimated parameters:
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p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF p�

m1 1.0 226.9 202.4 202.4 17.65 182.5
m2 1.0 15.93 150.7 150.7 0.615 182.5
D 0.01 25.63 29.5 29.5 25.65 31.536
res 1.7 0.11E-3 0.41E-5 0.41E-5 0.15E-2 0.21E-4

9. Fitting criterion: u(0.5, t) and v(0.9, t) for t > 0

10. Measurements: Simulated at 10 time coordinates 0.5, 1, . . ., 5.

6.10 CONTAMIN

1. Background: Contamination of liquids.

2. Remarks: Data are very bad and the model is unstable. A reasonable fit cannot
be obtained. Either model, data or scaling are wrong.

3. System equations:
uit(x, t) = Duixx(x, t)

for i = 1 . . . 4, t > 0 and 0 < x < 10.7,

4. Initial conditions: ui(x, 0) = ci, i = 1, . . . , 4, for 0 < x < 10.7 with c1 = 0.5,
c2 = 1, c3 = 2, c4 = 5

5. Boundary conditions: ui(0, t) = 0, ui(10.7, t) = V yi(t)/Va for i = 1, . . . , 4,
Va = 0.00505, and t > 0

6. Coupled ODE’s:
ẏi(t) = −DFau

i
x(10.7, t)

for t > 0 with yi(0) = ciVa/V , i = 1, . . . , 4

7. Transmission conditions: none

8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF

D 1.0 0.038 0.705 0.0 0.0
V 10.0 95.8 95.8 95.8 93.2
Fa 1.0 1.02 0.00 47.1 0.287
res 0.70 0.0045 0.0045 0.0045 0.0046

9. Fitting criterion: yi(t)/Va for i = 1, . . . , 4 and t > 0

10. Measurements:

ti y1
i y2

i y3
i y4

i

2.0 0.00236 0.00375 0.00909 0.01183
8.0 0.01061 0.00375 0.03463 0.02915
24.0 0.00822 0.00938 0.02698 0.06002
48.0 0.00404 0.01125 0.01804 0.08210
72.0 0.02006 0.00837 0.03492 0.06652
96.0 0.01128 0.02424 0.02857 0.05050
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6.11 MILL

1. Background: Plate cooling in rolling mills with two cooling areas (water and
air), see Hedrich19 or Groch15.

2. Remarks: The optimization parameters appear only in a boundary coefficient
where a linear dependency is assumed. The model is ill-posed in the sense that
parameters cannot be identified correctly.

3. System equations:

ut(x, t) = (kλux(x, t)2 + λ(u(x, t))uxx(x, t))/(p(u(x, t))cp(u(x, t))

for 0 < t ≤ 30 and 0 < x < 10, where λ(u) = k0
λ + kλu, p(u) = k0

p + kpu and
kλ = 0.01, k0

λ = 15, k0
p = 7.85, kp = −0.00033, and cp(u) is a linear interpolation

of the data

ui cp(ui)
0.0 0.68
780.0 1.1
790.0 2.8
840.0 0.72
880.0 0.7
920.0 0.6
1400.0 0.73

see e.g. Tychonoff and Samarski40

4. Initial conditions: u(x, 0) = 900 for all x

5. Boundary conditions:

ux(xb, t) = 0.001(αu(xb, t)− ur) + E(t)c((u(xb, t) + 273.15)4

−(ur + 273.15)4)/λ(u(xb, t))

where E(t) = 0.001u(xb, t)(0.000125u(xb, t)− 0.38) + 1.1, c = 5.67E − 8, xb = 0
or xb = 10, respectively, and

ur = 20
α = 1000(1 + ψ)
ψ = a1 + 40a2 + 900a3 + 20a4 + 690a5

for 4 < t ≤ 20.5, and

ur = 50
α = 60

otherwise, see e.g. Strehlow39 and Seredynski36

6. Coupled ODE’s: none

7. Transmission conditions: none

8. Estimated parameters:
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p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF p�

a1 0.0 -0.00121 -0.0190 -0.0211 -0.406 -0.70
a2 0.0 -0.000580 -0.0290 -0.0283 0.0 0.0145
a3 0.0 -0.000960 0.0000576 0.000339 0.0 0.0012
a4 0.0 0.000610 0.135 0.135 0.0 0.0005
a5 0.0 0.000676 -0.00288 -0.00329 0.0 -0.002
res 0.011 0.14E-6 0.14E-6 0.14E-6 0.12E-5 0.14E-6

9. Fitting criterion: u(0, t) for t > 0
10. Measurements: Simulated at 40 equidistant time coordinates between 0 and

40

6.12 DISRET

1. Background: Non-isothermal turbular reactor with with first-order reaction for
axial heat dispersion, see Ingham e.al.22.

2. Remarks: The right-habnd side of the PDE contains an exponential term con-
taining the Arrhenius constants of the substances. Thus the model replects a
typical situation arising very often in chemical engineering. Parameters can be
identified by three algorithms easily, but the search method DSLMDF failed.

3. System equations:

ct(x, t) = cxx(x, t)− p1cx(x, t)− r1(x, t)
Tt(x, t) = (α/D)Txx(x, t)− p2Tx(x, t)− b2r1(x, t)

with
α = λ/(ρcp)
b1 = zf l

2/D
b2 = Hrc0/(ρcpT0)
p1 = vl/D
p2 = vl/α
r1(x, t) = b1c(x, t) exp(−Ea/(RT0T (x, t)))

for 0 < t ≤ 0.3 and 0 < x < 1, l = 100, c0 = 0.5, T0 = 637, v = 0.3, ρ = 60,
Hr = −36000, cp = 0.8, Ea = 40000, zf = 12000, R = 3.577

4. Initial conditions: c(x, 0) = 0.0 and T (x, 0) = 1 for all x

5. Boundary conditions: c(0, t) = 1, T (0, t) = 1, cx(1, t) = 0, Tx(1, t) = 0 for all
t > 0

6. Coupled ODE’s: none
7. Transmission conditions: none
8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF p�

D 5.0 0.99996 0.99996 0.99995 - 1.0
λ 1.0 48.14 48.14 48.14 - 48.0

res 3.0 0.00021 0.00021 0.00021 - 0.00028
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9. Fitting criterion: c(1, t) and T (1, t) for t > 0

10. Measurements: Simulated at 19 time coordinates 0.01, 0.02, . . ., 0.08, 0.1, . . .,
0.3

6.13 SHEAR

1. Background: Shear band formation with fast moving front, see Nowak28 and
Flaherty, Moore13.

2. Remarks: The optimization algorithms computed different solutions. The best
one was obtained by the heuristic search method DSLMDF, but with a large
number of function evaluations.

3. System equations:

ut(x, t) = v(x, t)
vt(x, t) = (g(T (x, t))ux(x, t))x + vxx(x, t)/Re
Tt(x, t) = Txx(x, t)/(PrRe) + vx(x, t)2/Re

with
g(T ) = 0.5((1 + ginf )− (1− ginf ) tanh((T − Tm)/∆T ))

for 0 < t ≤ 0.3 and 0 < x < l, ∆T = 0.01

4. Initial conditions: u(x, 0) = 0, v(x, 0) = 0 and T (x, 0) = 0 for all x

5. Boundary conditions:

v(1, t) =




v0t/r, if t < r
v0, if r ≤ t < d − r
v0(d − t)/r, if d − r ≤ t < d
0, if t ≥ d

v(0, t) = 0, T (0, t) = 0, T (1, t) = 0 for all t > 0, where v0 = 0.5, d = 1.5, and
r = 0.05

6. Coupled ODE’s: none

7. Transmission conditions: none

8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF p�

Re 200.0 199.9 81.6 80.36 84.3 100.0
Pr 100.0 99.9 1005.8 0.817 16.6 50.0

ginf 0.1 0.751 0.539 0.00035 0.0 0.05
Tm 0.01 0.0138 0.0246 0.0283 0.0338 0.03
res 0.89 0.13 0.052 0.045 0.042 0.049

9. Fitting criterion: u(0.5, t), v(0.5, t) and T (0.5, t) for t > 0

10. Measurements: Simulated at 11 equidistant time coordinates 0.3, 0.6, . . ., 3.3
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6.14 EL DYN

1. Background: Electrodynamic model with steep boundary layers, see Blom and
Zegeling4 and Bakker3.

2. Remarks: The resulting parameter estimation problem can be solved more or
less easily by all optimization codes.

3. System equations:

ut(x, t) = εpuxx(x, t)− g(u(x, t)− v(x, t))
vt(x, t) = pvxx(x, t) + g(u(x, t)− v(x, t))

with
g(z) = exp(ηz/3)− exp(−2ηz/3)

for 0 < t ≤ 0.3 and 0 < x < l,
4. Initial conditions: u(x, 0) = 1 for all x

5. Boundary conditions: ux(0, t) = 0, u(1, t) = 1, v(0, t) = 0, vx(1, t) = 0 for all
t > 0

6. Coupled ODE’s: none
7. Transmission conditions: none
8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF p�

ε 1.0 0.14311 0.14309 0.14309 0.1430 0.143
p 1.0 0.1751 0.1749 0.17493 0.1748 0.1743
η 1.0 17.21 17.21 17.21 17.20 17.19

res 8.0 0.85E-6 0.82E-6 0.82E-6 0.83E-6 0.20E-5

9. Fitting criterion: u(0, t) and v(1, t) for t > 0
10. Measurements: Simulated at 10 time coordinates 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1,

2, 3, 4

6.15 HOT SPOT

1. Background: Single step reaction from combustion theory with steep temper-
ature front lines, see Adjerid and Flaherty1 and Verwer e.al.42.

2. Background: The two parameters in the right-hand side of the PDE to be
estimated, can be identified correctly by all optimization algorithms.

3. System equations:

ut(x, t) = uxx(x, t) +
r exp(δ)

aδ
(1 + a − u(x, t)) exp(−δ/u(x, t))

for 0 < t ≤ 0.3 and 0 < x < 1,
4. Initial conditions: u(x, 0) = 1 and v(x, 0) = 0 for all x

5. Boundary conditions: ux(0, t) = 0, u(1, t) = 1 for all t > 0
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6. Coupled ODE’s: none
7. Transmission conditions: none
8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF p�

a 5.0 0.999991 0.999991 0.999991 0.999993 1.0
δ 1.0 20.05 20.05 20.05 20.03 20.0
r 1.0 4.998 4.998 4.998 4.998 5.0

res 1.8 0.57E-4 0.58E-4 0.58E-4 0.58E-4 0.61E-4

9. Fitting criterion: u(0, t) for t > 0
10. Measurements: Simulated at 11 time coordinates 0.05, 0.1, 0.15, 0.2, 0.23,

0.24, 0.25, 0.26, 0.27, 0.28, 0.29

6.16 WAVES

1. Background: Waves travelling in opposite directions in form of a semi-hyperbolic
system, see Madsen25 and Verwer e.al.42.

2. Remarks: Initial conditions are non-continuous and depend on parameters to be
estimated. They can be estimated correctly, only NLSNIP broke down because
of instabilities during integration.

3. System equations:

ut(x, t) = −ux(x, t)− au(x, t)v(x, t)
vt(x, t) = vx(x, t)− au(x, t)v(x, t)

for t > 0 and −0.5 < x < 0.5
4. Initial conditions:

u(x, 0) =
{

b(1 + cos(cπx)) for −0.3 ≤ x ≤ −0.1
0 otherwise

v(x, 0) =
{

b(1 + cos(cπx)) for 0.1 ≤ x ≤ 0.3
0 otherwise

5. Boundary conditions: u(−0.5, t) = 0, u(0.5, t) = 0, v(−0.5, t) = 0, v(0.5, t) =
0 for all t > 0

6. Coupled ODE’s: none
7. Transmission conditions: none
8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF p�

a 70.0 100.08 100.08 - 100.08 100.0
b 1.0 0.5001 0.5001 - 0.5001 0.5
c 5.0 10.001 10.001 - 10.002 10.0

res 8.4 0.35E-4 0.35E-4 - 0.35E-4 0.51E-4
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9. Fitting criterion: u(xi, t) and v(xi, t) for t > 0 with x1 = −0.2, x2 = −0.1,
x3 = 0, x4 = 0.1 and x5 = 0.2

10. Measurements: Simulated at 5 time coordinates 0.1, 0.15, 0.2, 0.25, 0.35

6.17 FLAME

1. Background: Flame propagation with fast moving front, see Dwyer, Sanders10
and Verwer e.al.42.

2. Remarks: The fast moving front does not impose major numerical difficulties.
The model equation is integrated w.r.t. a very crude spatial discretization.

3. System equations:

ut(x, t) = uxx(x, t)− u(x, t)f(v(x, t))
vt(x, t) = vxx(x, t) + u(x, t)f(v(x, t))

for t > 0 and 0 < x < 1, where f(v) = 1.0E + 6a exp(−4/v)
4. Initial conditions: u(x, 0) = 1, v(x, 0) = 0.2 for 0 ≤ x ≤ 1
5. Boundary conditions: ux(0, t) = 0, ux(1, t) = 0, vx(0, t) = 0 for all t > 0, and

v(1, t) = 0.2 + t/b for all t ≤ b and v(1, t) = 1.2 otherwise
6. Coupled ODE’s: none
7. Transmission conditions: none
8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF p�

a 1.0 3.513 3.519 3.519 3.425 3.52
b 0.001 0.000198 0.000199 0.000199 0.000193 0.0002

res 0.61 0.68E-6 0.66E-6 0.66E-6 0.20E-5 0.67E-6

9. Fitting criterion: u(xi, t) for t > 0 with xi = 0.6, 0.7, . . . 1, i = 1, . . . 5
10. Measurements: Simulated at 3 time coordinates 0.002, 0.004, 0.006

6.18 BRUSSEL

1. Background: Multi-molecular reaction with diffusion, see Flaherty and Moore13
and Hairer, Nørsett and Wanner16 (brusselator).

2. Remarks: A large number of measurements was simulated and spread over the
whole two-dimensional integration interval. The parameters estimation prob-
lem is well-posed, i.e. parameters can be identified correctly by all algorithms.
However the calculation times are quite large.

3. System equations:

ut(x, t) = εuxx(x, t) + u(x, t)2v(x, t)− au(x, t) + 1
vt(x, t) = εvxx(x, t)− u(x, t)2v(x, t) + bu(x, t)

for t > 0 and 0 < x < 1, where ε = 0.002
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4. Initial conditions: u(x, 0) = 0,

v(x, 0) = 1 + 5x − 0.25 tanh(cx)− 0.25 tanh(c(1− x))

for 0 ≤ x ≤ 1

5. Boundary conditions: ux(0, t) = 0, ux(1, t) = 0, vx(0, t) = 0 and vx(1, t) = 0
for all t > 0

6. Coupled ODE’s: none

7. Transmission conditions: none

8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF p�

a 3.0 4.4002 4.4002 4.4002 4.4002 4.4
b 3.0 3.4004 3.4004 3.4004 3.4004 3.4
c 10.0 19.92 19.91 19.91 19.91 20.0

res 0.69E+4 0.52E-3 0.52E-3 0.52E-3 0.52E-3 0.59E-3

9. Fitting criterion: u(xi, t) and v(xi, t) for t > 0 with xi = 0.2, 0.4, 0.6, 0.8, 1,
i = 1, . . . , 5

10. Measurements: Simulated at 12 time coordinates 1, 2, . . ., 12

6.19 POLLUTN

1. Background: Pollution effects of supersonic transports in stratosphere, see Sin-
covec and Madsen37 or MacCracken26.

2. Remarks: The numerical integration is very time-consuming, since the model
equation is highly stiff and the integration interval is very large. Also in this
case, we start the ODE-solver with default solution tolerances, e.g. an initial
steplength of 1.0E-4.

3. System equations:

ut(x, t) = Duxx(x, t) + k1 − k2u(x, t) + k3v(x, t) + k4y(x, t)
−k5u(x, t)v(x, t)− k6u(x, t)y(x, t)

vt(x, t) = Dvxx(x, t) + k2u(x, t)− k3v(x, t) + k5u(x, t)v(x, t)
−k7v(x, t)w(x, t)

wt(x, t) = Dwxx(x, t)− k8w(x, t) + k4y(x, t) + k6u(x, t)y(x, t)
−k7v(x, t)w(x, t) + 800 + s(x)

yt(x, t) = Dyxx(x, t)− k4y(x, t) + k7v(x, t)w(x, t)− k6u(x, t)y(x, t)
+800

for 0 ≤ x ≤ 1, t ≥ 0, where D = 1.0E − 9, and s(x) = 3250, if 0.475 ≤ x ≤ 0.575,
and s(x) = 360 otherwise.

4. Initial conditions: u(x, 0) = 1.306028E+6, v(x, 0) = 1.076508E+12, w(x, 0) =
6.457715E + 10, y(x, 0) = 3.542285E + 10 for 0 ≤ x ≤ 1
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5. Boundary conditions: ux(xb, t) = 0, vx(xb, t) = 0, wx(xb, t) = 0, yx(xb, t) = 0
for t > 0 and xb = 0 or xb = 1, respectively

6. Coupled ODE’s: none

7. Transmission conditions: none

8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF p�

k1 1.0E+5 4.478E+5 4.916E+5 4.929E+5 2.536E+5 4.0000E+5
k2 1.0E+2 0.739E+2 0.122E+2 0.059E+2 0.752E+2 2.7244E+2
k3 1.0E-4 0.269E-4 0.044E-4 0.021E-4 0.279E-4 1.0002E-4
k4 1.0E-3 1.902E-3 0.310E-3 0.146E-3 1.929E-3 7.0000E-3
k5 1.0E-16 1.128E-16 0.368E-16 0.538E-16 2.410E-16 3.6700E-16
k6 1.0E-12 4.621E-12 5.070E-12 5.082E-12 2.631E-12 4.1300E-12
k7 1.0E-15 0.974E-15 0.161E-15 0.078E-15 0.988E-15 3.5700E-15
k8 1.0E-8 1.605E-8 1.604E-8 1.605E-8 1.609E-8 1.6000E-8
res 0.52 0.60E-5 0.50E-5 0.55E-5 0.46E-4 0.17E-4

9. Fitting criteria: u(1, t), v(1, t), w(1, t) and y(1, t) for t > 0

10. Measurements: Simulated at 7 time coordinates 1.0E+6, 5.0E+6, 1.0E+7,
5.0E+7, 1.0E+8, 5.0E+8, 1.0E+9

6.20 INTEG

1. Background: First-order population dynamics governed by an integro-differen-
tial equation, see Pennington and Berzins29 or Fairweather and Lopez-Marcos11,
with exact boundary condition.

2. Remarks: The intention is to show that also problems with integrals over the
spatial interval can be identified correctly. The resulting parameter estimation
problem is quite stable, all optimization algorithms compute the optimal param-
eters correctly.

3. System equations:

ut(x, t) = −b1ux(x, t)− b2u(x, t)
∫ a

0

u(z, t)dz

for 0 < t ≤ a, 0 < x ≤ a

4. Initial conditions:

u(x, 0) =
exp(−x)

2− exp(−a)
for 0 ≤ x ≤ a

5. Boundary conditions:

u(0, t) =
1

1− exp(−a) + exp(−t)
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for 0 ≤ t ≤ a

6. Coupled ODE’s: none
7. Transmission conditions: none
8. Estimated parameters:

p p0 pDFNLP pDN2GB pNLSNIP pDSLMDF p�

b1 0.01 1.003 1.004 1.004 1.004 1.0
b2 10.0 1.004 1.005 1.005 1.005 1.0
b3 10.0 1.0004 1.00002 1.00002 0.9997 1.0
res 4.8 0.46E-5 0.45E-5 0.45E-5 0.45E-5 0.67E-5

9. Fitting criterion: u(i, t) for 0 ≤ t ≤ a and i = 1, . . . , 5
10. Measurements: Simulated at time coordinates 1, 2, 3, 4, 5


