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Abstract

The Fortran subroutine MISQP solves mixed-integer nonlinear programming
problems by a modified sequential quadratic programming (SQP) method. Under
the assumption that integer variables have a smooth influence on the model func-
tions, i.e., that function values do not change drastically when in- or decrementing
an integer value, successive quadratic approximations are applied. The algorithm is
stabilized by a trust region method including Yuan’s second order corrections. It is
not assumed that integer variables are relaxable. In other words, problem functions
are evaluated only at integer points. The Hessian of the Lagrangian function is
approximated by BFGS updates subject to the continuous and integer variables.
The usage of the code is documented and illustrated by an example.
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1 Introduction

We consider the general optimization problem to minimize an objective function f under
nonlinear equality and inequality constraints,

x ∈ R
nc , y ∈ N

ni :

min f(x, y)

gj(x, y) = 0 , j = 1, . . . , me ,

gj(x, y) ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu ,

yl ≤ y ≤ yu ,

(1)

where x and y denote the vectors of the continuous and integer variables, respectively. It
is assumed that the problem functions f(x, y) and gj(x, y), j = 1, . . ., m, are continuously
differentiable subject to all x ∈ R

nc .
Trust region methods have been invented many years ago first for unconstrained

optimization, especially for least squares optimization, see for example Powell [25], or
Moré [23]. Extensions were developed for non-smooth optimization, see Fletcher [13],
and for constrained optimization, see Celis [7], Powell and Yuan [26], Byrd et al. [6],
Toint [34] and many others. A comprehensive review on trust region methods is given by
Conn, Gould, and Toint [8].

On the other hand, sequential quadratic programming or SQP methods belong to the
most frequently used algorithms to solve practical optimization problems. The theoretical
background is described e.g. in Stoer [33], Fletcher [12], or Gill et al. [16].

However, the situation becomes much more complex if additional integer variables
must be taken into account. Numerous algorithms have been proposed in the past, see
for example Floudas [15] or Grossmann and Kravanja [18] for review papers. Typically,
these approaches require convex model functions and continuous relaxations of integer
variables. By a continuous relaxation, we understand that integer variables can be treated
as continuous variables, i.e., function values can also be computed between successive
integer points. There are branch-and-bound methods where a series of relaxed nonlinear
programs obtained by restricting the variable range of the relaxed integer variables must
be solved, see Gupta and Ravindran [19] or Borchers and Mitchell [2]. When applying
an SQP algorithm for solving a subproblem, it is possible to apply early branching, see
also Leyffer [21]. Pattern search algorithms are available to search the integer space, see
Audet and Dennis [1]. After replacing the integrality condition by continuous nonlinear
constraints, it is possible to solve the resulting highly nonconvex program by a global
optimization algorithm, see e.g. Li and Chou [22]. Outer approximation methods are
investigated by Duran and Grossmann [9] and Fletcher and Leyffer [14], where a sequence
of alternating mixed-integer linear and nonlinear programs must be solved. Alternatively,
it is also possible to apply cutting planes similar to linear programming, see Westerlund
and Pörn [35].
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But fundamental assumptions are often violated in practice. Many real-life mixed-
integer problems are not relaxable, and model functions are highly nonlinear and noncon-
vex. Moreover, some approaches require detection of infeasibility of nonlinear programs,
a highly unattractive feature from the computational point of view. We assume now
that integer variables are not relaxable, that there are relatively large ranges for integer
values, and that the integer variables possess some kind of physical meaning, i.e., are
smooth in a certain sense. It is supposed that a slight alteration of an integer value, say
by one, changes the model functions only slightly, at least much less than a more drastic
change. Typically, relaxable programs satisfy this requirement. In contrast to them, there
are categorical variables which are introduced to enumerate certain situations and where
any change leads to a completely different category and thus to a completely different
response.

A practical situation is considered by Bünner and Schittkowski [3], where typical
integer variables are the number of fingers and the number of layers of an electrical filter.
By increasing or decreasing the number of fingers by one, we expect only a small alteration
in the total response, the transmission energy. The more drastically the variation of the
integer variable is, the more drastically model function values are supposed to change.

Thus, we propose an alternative idea in Section 2 where we try to approximate the
Lagrangian subject to the continuous and integer variables by a quadratic function based
on a quasi-Newton update formula. Instead of a line search as is often applied in the con-
tinuous case, we use trust regions to stabilize the algorithm and to enforce convergence
following the continuous trust region method of Yuan [37] with second order corrections.
The specific form of the quadratic programming subproblem avoids difficulties with incon-
sistent linearized constraints and leads to a convex mixed-integer quadratic programming
problem, which can be solved by any available algorithm, for example, a branch-and-bound
method. Algorithmic details and numerical results are reported in Exler et. al. [11].

The numerical subroutines are implemented in Fortran, as close as necessary to F77,
without global variables (COMMON) or ’tricky’ Fortran constructs like EQUIVALENCE
or ENTRY. Transfer to C by f2c is possible. Nonlinear functions and, if required, partial
derivatives must be provided by reverse communication, the most flexible and most user-
friendly way. The usage of the Fortran subroutine is documented in Section 4, and
Section 5 contains an illustrative example.

2 The Mixed-Integer Trust Region SQP Method

Basically, integer variables lead to extremely difficult optimization problems. Even if we
assume that the integer variables are relaxable and that the resulting continuous problem
is strictly convex, it is possible that the integer solution is not unique. There is no
numerically applicable criterion to decide whether we are close to an optimal solution nor
can we retrieve any information about the position of the optimal integer solution from

3



the continuous solution of the corresponding relaxed problem.
The basic idea of a trust region method is to compute a new iterate by a second order

model or a close approximation, see Exler and Schittkowski [10] or Exler et. al. [11] for
more details. The stepsize is restricted by a trust region radius Δk, where k denotes the
k-th iteration step. Subsequently, a ratio rk of the actual and the predicted improvement
subject to a certain merit function is computed. The trust region radius is either enlarged
or decreased depending on the deviation of rk from the ideal value rk = 1. If sufficiently
close to a solution, the artificial bound Δk should not become active, so that the new trial
proposed by the second order model can always be accepted.

For the continuous case, the superlinear convergence rate can be proved, see Fletcher [13],
Burke [4], or Yuan [36]. The individual steps depend on a large number of constants, which
are carefully selected based on numerical experience.

The goal is to apply a trust region SQP algorithm and to adapt it to the mixed-integer
case with as few alterations as possible. Due to the integer variables, the quadratic pro-
gramming subproblems that have to be solved are mixed-integer quadratic programming
problems and can be solved by any available algorithm. Since the generated subproblems
are always convex, we apply the branch-and-bound code MIQL of Lehmann et al. [20].
The mixed-integer quadratic programming problems to be solved, are of the form

d ∈ R
nc ,

e ∈ N
ni ,

δ ∈ R

:

min 1
2

(
d
e

)T

Bk

(
d
e

)
+∇xf(xk, yk)

Td+ dyf(xk, yk)
T e + σkδ

−δ ≤ ∇xgj(xk, yk)
Td+ dygj(xk, yk)

T e+ gj(xk, yk) ≤ δ , j = 1, . . . , me ,

−δ ≤ ∇xgj(xk, yk)
Td+ dygj(xk, yk)

T e+ gj(xk, yk) , j = me + 1, . . . , m ,

max(xl − xk,−Δc
k) ≤ d ≤ min(xu − xk,Δ

c
k) ,

max(yl − yk,−Δi
k) ≤ e ≤ min(yu − yk,Δ

i
k) ,

0 ≤ δ .
(2)

The solution is denoted by dk, ek, and δk.
Since we do not assume that (1) is relaxable, i.e., that f and g1, . . ., gm can be evaluated

at any fractional parts of the integer variables, we approximate the first derivatives at
f(x, y) by the difference formula

dyf(x, y) =
1

2
(f(x, y1, . . . , yj + 1, . . . , yni

)− f(x, y1, . . . , yj − 1, . . . , yni
)) (3)

for j = 1, . . . , ni, at neighbored grid points, see Exler et. al. [11] for the detailed procedure.
If either yj + 1 or yj − 1 violates a bound, we apply a non-symmetric difference formula.
Similarly, dygj(x, y) denote a difference formula for first derivatives at gj(x, y) computed
at neighbored grid points.

The adaption of the continuous trust region radius must be modified, since a trust
region radius smaller than one does not allow any further change of integer variables.
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Therefore, two different radii are defined, Δc
k for the continuous and Δi

k for the integer
variables. We prevent Δi

k from falling below one by Δi
k+1 := max(1, 2Δi

k) and Δi
k+1 :=

max(1, 4Δi
k). Note, however, that the algorithm allows a decrease of Δi

k below one. In
this situation, integer variables are fixed and a new step is made only subject to the
continuous variables. As soon as a new iterate is accepted, we set Δi

k to one in order to
be able to continue optimization over the whole range of variables.

For solving continuous quadratic programming problems, we use the code QL of Schitt-
kowski [29], which is based on an implementation of Powell [24]. The underlying primal-
dual method of Goldfarb and Idnani [17] is particularly useful for designing a branch-and-
bound algorithm for mixed-integer quadratic programs, e.g., by exploiting dual informa-
tion for early branching. The corresponding code is called MIQL, see Lehmann et al. [20],
and is used in all situations where we have to solve mixed-integer quadratic programs.

3 Numerical Results

We are interested in comparing several parameter settings to analyze their influence on
the performance. We select 142 test problems out of 186 problems published in Schitt-
kowski [32], which have not more than 20 integer or binary variables and not more than
400 continuous variables, to prevent extreme outliers. All test examples are provided with
the best objective function value f � we know, either obtained from analytical solutions,
literature, or extensive numerical testing, see Schittkowski [32] for details. In seven cases,
we found better solutions than those published in the literature.

Note again that our main paradigm is to proceed from non-relaxable integer variables
and descent directions, which can be considered as very crude numerical approximations
of partial derivatives by a difference formula. To be as close as possible to complex
practical engineering applications, derivatives with respect to continuous variables are
approximated by a forward difference formula. Integer derivatives are replaced by descent
directions, see Exler et al. [11] for the detailed procedure. For binary variables or for
variables at a bound, a forward or backward difference formula is applied, respectively.

First we need a criterion to decide whether the result of a test run can be considered
as a successful return or not. Let εt > 0 be a tolerance for defining the relative accuracy,
and (xk, yk) the final iterate of a test run. If f � = 0, as in some of the academic test
instances, we add the value one to the objective function. We call (xk, yk) a successful
solution, if the relative error in the objective function is less than εt and if the maximum
constraint violation is less than ε2t , i.e., if

f(xk, yk)− f � < εt|f �| (4)

and ‖g(xk, yk)
−‖∞ < ε2t , where g(xk, yk)

− represents the vector of constraint violations.
We take into account that a code returns a solution with a better function value than
the best known one, subject to the error tolerance of the allowed constraint violation.
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The tolerance is smaller for measuring the constraint violation than for the error in the
objective function, since we apply a relative measure in this case.

Optimization algorithms for continuous optimization have the advantage that in each
step, local optimality criteria, the so-called KKT-conditions, can be checked. The algo-
rithm is stopped as soon as an iterate is sufficiently feasible and satisfies these stationary
conditions subject to a user-provided tolerance.

In mixed-integer optimization, however, we do not know how to distinguish between
a local or global solution nor do we have any local criterion to find out whether we are
sufficiently close to a solution or not. Thus, our algorithm stops if constraints are satisfied
subject to a tolerance, and if no further progress is possible towards neighboring grid points
as measured by a merit function. Thus, we distinguish between feasible, but non-global
solutions, successful solutions as defined above, and false terminations. We call the return
of a test run, say xk and yk, an acceptable solution, if the internal termination conditions
are satisfied subject to a reasonably small tolerance ε = 10−6 and if instead of (4)

f(xk, yk)− f � ≥ εt|f �| (5)

holds. For our numerical tests, we use εt = 0.01. Note that our approach is based on a
local search method, as in case of continuous optimization, and that global search is never
started.

There is basic difficulty when evaluating statistical comparative scores by mean values
for a series of test problems and different computer codes. It might happen that the
less reliable codes do not solve the more complex test problems successfully, but the
more advanced ones solve them with additional numerical efforts, say calculation time
or number of function calls. A direct evaluation of mean values over successful test runs
would thus penalize the more reliable algorithms.

A more realistic possibility is to compute mean values of the criteria we are interested
in, and to compare the codes pairwise over sets of test examples, which are successfully
solved by two codes. We then get a reciprocal ncode × ncode matrix, where ncode is the
number of codes under consideration. The largest eigenvalue of this matrix is positive
and we compute its normalized eigenvector from where we retrieve priority scores. In a
final step, we normalize the eigenvectors so that the smallest coefficient gets the value one.
The idea is known under the name priority theory, see Saaty [27] or the appendix, and
has been used by Schittkowski [28] for comparing 27 optimization codes, see also Exler et
al. [11] for another comparative study of mixed-integer codes.

We use the subsequent criteria to compare the robustness and efficiency of our codes:
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nsucc - percentage of successful and acceptable test runs according to above def-
initions,

nacc - percentage of acceptable, i.e., of non-global feasible solutions, see above
definition,

nerr - percentage of errors, i.e., of terminations with IFAIL> 0,
pfunc - relative priority of equivalent function calls including function calls used

for gradient approximations,
nfunc - average number of equivalent function calls including function calls used

for computing a descent direction or gradient approximations, evaluated
over all successful test runs, where one function call consists of one eval-
uation of the objective function and all constraint functions at a given x
and y,

pgrad - relative priority of number of iterations,
ngrad - average number of iterations or gradient evaluations subject to the con-

tinuous variables, respectively, evaluated over all successful test runs,
ptime - relative priority of execution times.
time - average execution times in seconds, evaluated over all successful test runs,

For the standard version of MISQP, partial derivatives subject to continuous variables
are computed by forward differences. The following parameter settings are defined to
compare several versions of MISQP against the standard options:

1 - standard version
2 - external function scaling
3 IOPT(1)=0 function scaling suppressed
4 LOPT(3)=F internal scaling of matrix Bk suppressed
5 IDERIV=F partial derivatives subject to integer variables computed by

forward differences
6 IOPT(6)=0 restarts suppressed
7 IOPT(7)=1 L∞ merit function
8 - partial derivatives subject to continuous variables computed

by two-sided differences
9 IOPT(2)=0 monotone trust region updates

We apply default parameter settings and tolerances unless changed as indicated in the
table, with termination tolerance 10−6 of MISQP and 10−12 of MIQL, the mixed-integer
quadratic programming code, see Lehmann et al. [20]. Maximum number of iterations
is 500, the maximum number of iterations without improvements is 5, and the maximum
number of branch-and-bound nodes for solving a mixed-integer quadratic programming
subproblem is 1,000.

The Fortran codes are compiled by the Intel Visual Fortran Compiler 10.1 under
Windows Vista and executed on an Intel Core(TM) i7-2720QM CPU with 2.20 GHz and
8 GB RAM.
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code nsucc(%) nacc(%) nerr(%) pfunc nfunc pgrad ngrad ptime time

1 88.0 9.9 2.1 1.8 529 1.6 20 2.3 0.19
2 88.0 10.6 1.4 1.8 586 1.6 21 2.4 0.18
3 84.5 9.2 6.3 1.8 475 1.6 19 2.4 0.16
4 62.0 35.2 2.8 1.5 377 1.4 13 1.8 0.12
5 83.1 12.7 4.2 1.8 667 2.5 34 2.5 0.22
6 64.1 32.4 3.5 1.0 273 1.0 10 1.0 0.05
7 88.0 11.3 1.4 2.1 696 2.0 27 2.9 0.24
8 89.4 8.5 2.1 2.5 839 1.6 21 2.1 0.18
9 83.1 14.8 2.1 1.6 487 1.5 18 2.4 0.16

Table 1: Performance Results for Different Parameter Settings of MISQP

To understand the fifth version, one has to take into account that although we proceed
from non-relaxable model functions, our test problems nevertheless consist of analytical
functions and are relaxable. In this case, we want to check whether analytical partial
derivatives subject to integer variables, if exist, lead to better numerical results.

Note that one iteration corresponds to the solution of one mixed-integer quadratic
programming problem. The number of equivalent is always relatively large, since 2nc

additional function evaluations are needed to approximate partial derivatives subject to
continuous variables by a two-sided difference formula. To give an example, we need 360
additional function calls for each iteration to approximate derivatives for test problem
PARALLEL.

We evaluate the performance of MISQP on a test set of academic test examples pub-
lished in Schittkowski [32]. Each test problem comes with a function value which has
been found in the literature or which has been obtained by extensive testing over several
years. They are believed to represent the optimal solution, at least we did not find bet-
ter results by our test runs. Most test problems are taken from the GAMS MINLPLib,
see Bussieck, Drud, and Meeraus [5]. Table 1 shows numerical results obtained for the
different parameter settings of the mixed-integer trust region method MISQP.

A couple of test runs were terminated by an error message, in most cases because of
reaching maximum number of iterations or not being able to find a feasible point. In the
first case, it is nevertheless possible that an optimal solution is obtained.

The most important conclusions are:

• The more sophisticated external function scaling procedure does not improve ro-
bustness or efficiency.

• Without proper scaling of the quasi-Newton matrix, the algorithm becomes much
more unreliable.
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• Analytical partial derivatives subject to the integer variables do not improve robust-
ness or efficiency, and the number of iterations is enlarged.

• Internal restarts are extremely important despite higher number of function evalu-
ations and calculation times. Otherwise, the code becomes unreliable.

• Change of the merit function does not influence performance significantly.

• More accurate partial derivatives subject to the continuous variables increase the
number of function evaluations, but are a bit more reliable.

• Monotone trust region updates decrease the number of function calls, but less prob-
lems are successfully solved.

Finally, it might be interesting to compare performance results obtained for mixed-
integer problems on the one hand and for the corresponding continuous relaxations on the
other. Note that all of our codes are designed to handle integer variables as non-relaxable
ones, even if continuous relaxations are available and thus also partial derivatives subject
to integer variables. Nevertheless, our test problems are relaxable and MISQP can be
applied for solving continuous optimization problems in an efficient way. The code is then
a typical SQP-implementation with trust-region and a second-order stabilization.

Table 2 contains numerical results, where code number 10 stands for the relaxed version
of MISQP and 11 for reference results obtained by the code NLPQLP of Schittkowski [30,
31]. Also in this case, we apply a one-sided difference formula for partial derivatives to
avoid side effects due to inaccurate gradients.

The relaxed version of MISQP computes better optimal solutions for 106 test runs,
as must be expected. Very surprisingly, the numerical solution of mixed-integer test
problems requires significantly more function evaluations as the solution of the relaxed
counterparts. We conclude that the relaxation of our test problems makes them more
difficult to solve. Because of a large number of branch-and-bound steps when solving
the mixed-integer quadratic subproblems, computation times for solving mixed-integer
programs are much higher.

There is still another important conclusion. About 97 % of the relaxed mixed-integer
test problems are successfully solved by MISQP in the sense that the code terminates
at a feasible iterate where the optimality criteria are satisfied subject to a tolerance of
10−6, which is either a local or a global solution. Thus, we should not expect that MISQP
will be able to get significantly higher scores for nsucc for the much more complex mixed-
integer version of our test problem suite. Another conclusion is that at least 16 % of the
test problems are probably non-convex.
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code nsucc(%) nacc(%) nerr(%) nfunc ngrad time

1 88.0 9.9 2.1 529 20 0.19
10 81.0 15.8 3.5 837 26 0.06
11 83.8 4.2 12.0 370 19 0.01

Table 2: Performance Results of Mixed-Integer versus Continuously Relaxed Test Prob-
lems

4 Program Documentation

MISQP is implemented in Fortran, as close as necessary to F77, without global variables
(COMMON) or ’tricky’ Fortran constructs like EQUIVALENCE or ENTRY. Transfer
to C by f2c is easily possible. Nonlinear functions and partial derivatives subject to
continuous variables must be provided by reverse communication, the most flexible and
most user-friendly procedure. Note that the total number of integer and boolean variables
must be greater than zero.

MISQP is an implementation of the trust region SQP algorithm outlined in the previ-
ous section, in form of a Fortran subroutine. The mixed-integer quadratic programming
problems are solved by the code MIQL of Lehmann et al. [20], an implementation of a
branch-and-bound method. The underlying continuous quadratic programs are solved by
an implementation of the primal-dual method of Goldfarb and Idnani [17] going back to
Powell [24], see also Schittkowski [29]. Model functions and gradients are called by reverse
communication. By default, first and second derivative approximations subject to inte-
ger variables are computed internally by forward and two-sided differences at neighbored
grid points. The user has to provide functions and gradients in the same program, which
executes MISQP according to the following rules:

1. Choose starting values for the optimization variables, and store them in X, first
the continuous, then the binary followed by the integer variables. Initialize ROPT,
IOPT, and LOPT, at least with default values (0.0, -1, TRUE).

2. Compute objective and all constraint function values at X and store them in F and
G, respectively.

3. Compute partial derivatives of objective function and constraints subject to the
continuous variables and store them in DF and DG, respectively. The j-th row of
DG contains the gradient of the j-th constraint, j = 1, ..., m. If required, also partial
derivatives subject to the integer variables specified in IDERIV can be provided.

4. Set IFAIL=0 and execute MISQP.

5. If MISQP terminates with IFAIL=0, the internal stopping criteria are satisfied.
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6. In case of IFAIL>0, an error occurred.

7. If MISQP returns with IFAIL=-1, compute objective and constraint function values
at the parameter values found in X, store them in F and G, and call MISQP again.

8. If MISQP terminates with IFAIL=-2, compute gradient values subject to actual
variable stored in X, and store them in DF and DG. Only partial derivatives subject
to the continuous variables and the integer variables specified in IDERIV need to
be provided. Then call MISQP again.

Note that derivatives subject to integer variables are approximated by MISQP inter-
nally using a difference formula, if not prided by the user through IDERIV. The calling
sequence and the meaning of the parameters of MISQP are described below, where default
values, as far as applicable, are set in brackets. In some cases, we also present alternative
identifiers for parameters of option arrays for compatibility with the output and other
related software documentations.

Usage:

CALL MISQP( M, ME, MMAX, N, NBIN,
/ NINT, X, F, G, DF,
/ DG, XL, XU, ACC, MAXIT,
/ MNFS, MAXNDE, IPRINT, IOUT, IFAIL,
/ IDERIV, ROPT, IOPT, LOPT, RW,
/ LRW, IW, LIW, LW, LLW)

Parameter Definition:

M: Input parameter defining the total number of constraints.

ME: Input parameter defining the number of equality constraints.

MMAX : Row dimension of array DG containing Jacobian of constraints.
MMAX must be at least one and greater or equal to M.

N: Input parameter defining the total number of optimization variables,
continuous, binary and integer ones.

NBIN: Input parameter defining the number of binary optimization vari-
ables, must be less than or equal to N.
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NINT: Input parameter for the number of non-binary integer variables, must
be less than or equal to N. Moreover, NBIN+NINT must be greater
than zero.

X(N): Input and output vector containing starting point at first call. On
return, X is replaced by the current iterate. The first N-NBIN-NINT
positions are assigned to continuous variables, the subsequent NBIN
coefficients to binary variables, and the remaining NINT positions to
non-boolean integer variables.

F: Input parameter containing the objective function value at the actual
iterate X.

G(MMAX): Input vector containing the values of the constraints at the actual
iterate X, first ME equality constraints, then M-ME inequality con-
straints.

DF(N): Input vector containing the values of the gradient of the objective
function at the current iterate X. It is sufficient to determine the
gradients subject to the continuous variables and variables specified
in IDERIV. See also description of IDERIV below.

DG(MMAX,N): Input matrix containing the values of the Jacobian of the constraints
at the current iterate X, first for the ME equality constraints, then
for M-ME inequality constraints. In the driving program, the row
dimension of DG must be equal to MMAX. It is sufficient to deter-
mine the gradients subject to the continuous variables and variables
specified in IDERIV. See also description of IDERIV below.

XL(N),XU(N) : On input, the one-dimensional arrays XL and XU must contain the
upper and lower bounds of the variables, first for the continuous, then
for the binary and subsequently for the integer variables.

ACC: Input parameter defining the tolerance for termination.

MAXIT : Maximum number of iterations.
MNFS : Maximum number of feasible steps without improvements, where the

relative change of objective function values is measured by ACC and
feasibility is measured by sqrt(ACC). Must be greater than 1.

MAXNDE : Maximum number of branch-and-bound nodes for solving the mixed-
integer quadratic programming subproblem (1000).

IPRINT : Specification of the desired output level.

0 : No output of the program.

1 : Only a final convergence analysis is given.
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2 : One line of intermediate results is printed in each iteration.

3 : More detailed information is printed for each iteration.

IOUT : Positive integer number indicating the desired output unit number,
i.e., all write-statements start with ’WRITE(IOUT,... ’.

IFAIL : The parameter shows the reason for terminating a solution process.
Initially IFAIL must be set to zero. On return IFAIL could contain
the following values:

-2 : Compute new gradient values for continuous variables and vari-
ables specified in IDERIV in DF and DG. See description of DF, DG
and IDERIV.
-1 : Compute new function values in F and G, see above.

0 : Optimality conditions satisfied.

1 : Termination after MAXIT iterations.
2 : Trust region radius lower than ACCQP.

3 : Penalty parameter SIGMA tends to infinity.

4 : Termination at infeasible iterate.
5 : Termination with zero trust region for integer variables.

6 : Length of a working array is too short.

7 : False dimensions, e.g., M>MMAX.

8 : Lower or upper bound of a variable violates initial value.

9 : Linear constraints are inconsistent.
11: The continuous quadratic solver QL could not solve a quadratic
program after a maximal number of (40*(N+M)) iterations.

12 : The termination accuracy is insufficient for the continuous
quadratic solver QL to satisfy the convergence criterion.

13 : The continuous quadratic solver QL terminated due to an in-
ternal inconsistency, division by zero.

14 : Numerical instabilities prevent successful termination of contin-
uous quadratic solver QL.

15 : Termination due to more than MNFS steps without improve-
ments of feasible function values.
>90 : QP solver terminated with an error message IFQL and IFAIL
is set to IFQL + 100.

IDERIV(NBIN+NINT) : Logical input array specifying integer variables whose derivatives are
provided by the user and stored in DG and DF.

IDERIV(I)=TRUE : Column NCONT+I of DG and position
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NCONT+I of DF are set by the user.

IDERIV(I)=FALSE : Column NCONT+I of DG and position

NCONT+I of DF are set by MISQP by

evaluating functions at neighbored grid points.

Here we have NCONT = N - NINT - NBIN.
ROPT(60) : Double precision option array, to be initialized with -1.0D0 for default

parameter setting. Note that ROPT(41) to ROPT(60) are passed to
the MIQP solver and that our implementation MIQL may be replaced
by another one.

ROPT(1) Termination tolerance of the QP solver for several tests, e.g., whether
optimality conditions are satisfied or whether a number is considered
as zero or not (ACCQP, 1.0E-12).

ROPT(2) Factor for increasing a penalty parameter, must be greater than one
(RPEN, 10).

ROPT(3) Factor for increasing the internal descent parameter DELTA, see
ROPT(5). ROPT(3) must be less than one (DLTDEC, 0.1).

ROPT(4) Initial penalty parameter, greater than one (SIGMA, 1000).

ROPT(5) Initial scaling parameter, smaller than one (DELTA, 0.05).

ROPT(6) Initial continuous trust region radius, greater than zero (TRUSTC,
10).

ROPT(7) Initial integer trust region radius, not less than one (TRUSTI, 10).

ROPT(8) Scaling bound in case of IOPT(1)>0, i.e., function values are scaled
only if their absolute initial values are greater than the bound
(SCBND, 1.0).

IOPT(60) : Integer option array, to be initialized with -1 for default parameter
setting. Note that IOPT(41) to IOPT(60) are passed to the MIQP
solver and that our implementation MIQL may be replaced by an-
other one.

IOPT(1) Internal scaling of function values (SCALE, 1).

0 : No scaling.

1 : Scaling subject to absolute initial function values, if greater than
one or ROPT(8), respectively.

IOPT(2) Maximum number of successive iterations which are considered for
the non-monotone trust region algorithm, must be less than 100
(NONMON, 10).
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IOPT(3) Print level of the subproblem solver MIQL (IPRQP, 2).

IOPT(4) Output for number of gradient evaluations.

IOPT(5) Output for number of function evaluations.

IOPT(6) Maximum number of successive restarts without improving solution.
Setting might lead to better results, but increases the number of
function evaluations (MRS, 2).

IOPT(41) Branching rule (IBR, 1):

1 : Maximal fractional branching.

2 : Minimal fractional branching.

IOPT(42) Node selection strategy (INS, 3):

1 : Best of all (large search trees).

2 : Best of two (warmstarts, less memory for search tree).

3 : Depth first (good warmstarts, less memory, many QPs solved).

IOPT(44) Maximal number of successive warmstarts, to avoid numerical insta-
bilities (WSTART, 100).

IOPT(45) Calculate improved bounds if best-of-all selection strategy is used
(IMPB, 0).

LOPT(60) : Logical option array, to be initialized with TRUE for default para-
meter setting. Note that LOPT(41) to LOPT(60) are passed to the
MIQP solver and that our implementation MIQL may be replaced
by another one.

LOPT(2) Internal scaling of continuous variables (SCALE, TRUE).

LOPT(3) Modification of Hessian approximation to get more accurate search
directions. Calculation time is increased in case of a large number of
integer variables (BMOD, TRUE).

RW(LRW) : Real working array of length LRW.

LRW: Input parameter defining the length of RW, must be at least

7*N*N/2 + MMAX0*N + 105*N + 37*MMAX0 + 3*MAXNDE

+ 3*M*M/2 + 4*M*N + 500, where

MMAX0 = M + ME + NINT + NBIN + 20.

IW(LIW) : Integer working array of length LIW.

LIW: Input parameter defining the length of IW, must be at least

14*N + 6*MMAX0 + 6*MAXNDE + 150.

LW(LLW) : Logical working array of length LLW.

LLW: Input parameter defining the length of LW, must be at least
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4*N + MMAX0 + 150.

MISQP must be linked with the calling routine of the user and the mixed-integer
quadratic optimization code MIQL.

We cannot guarantee convergence to a global optimal solution, even not in the convex
case. It is possible that the algorithms stops with IFAIL=0 although the global optimum
subject to the integer variables has not been approached. A typical situation is successive
reduction of trust regions of the integer variables until falling beyond one, where no further
progress can be obtained.

In case of successful termination, the code passes the best computed solution to the
calling program together with corresponding function values. The derivative arrays DF
and DG do not always contain valid partial derivatives when leaving MISQP.

5 Example

To give an example how to organize the code, we consider a pseudo-convex test prob-
lem of Westerlund and Pörn [35], see also problem WP02 in Schittkowski [32], with one
continuous and one integer variable,

x ∈ R, y ∈ N :

min
(x− 3)2 − 10x

3x+ y + 1

5y − (x− 7)2 ≥ 0

1.8y − x ≥ 0

1 ≤ x ≤ 8

1 ≤ y ≤ 8

(6)

The Fortran source code for executing MISQP is listed below.

IMPLICIT NONE

INTEGER NMAX, MMAX, MMAX0, MAXNDE, LRW, LIW, LLW

PARAMETER (NMAX = 2,

/ MMAX = 2,

/ MAXNDE = 1000,

/ MMAX0 = 2*MMAX + NMAX + 20,

/ LRW = 7*NMAX*NMAX/2 + MMAX0*NMAX + 105*NMAX

/ + 37*MMAX0 + 3*MAXNDE + 3*MMAX*MMAX/2

/ + 4*MMAX*NMAX + 500,

/ LIW = 14*NMAX + 6*MMAX0 + 6*MAXNDE + 150,

/ LLW = 4*NMAX + MMAX0 + 150)

INTEGER IW(LIW), N, NCONT, NINT, NBIN, M, ME, IOUT,

/ MAXIT, MNFS, IPRINT, IFAIL, I, J, IOPT(60)

DOUBLE PRECISION RW(LRW), F, X(NMAX), G(MMAX), DF(NMAX),

/ DG(MMAX,NMAX), XL(NMAX), XU(NMAX), ACC, EPS,

/ EPSREL, FBCK, GBCK(MMAX), ROPT(60)

LOGICAL LW(LLW), IDERIV(NMAX), LOPT(60)

C

C Set some constants and initial values

C
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N = 2

NINT = 1

NBIN = 0

NCONT = N - NINT - NBIN

M = 2

ME = 0

DO I=1,N

XL(I) = 1.0D0

X(I) = 1.0D0

XU(I) = 8.0D0

END DO

DO I=1,60

ROPT(I) = -1.0D0

IOPT(I) = -1

LOPT(I) = .TRUE.

END DO

C

C Tolerances for calling MISQP

C

ACC = 1.0D-6

MAXIT = 100

MNFS = MAXIT

EPS = 1.0D-7

IPRINT = 2

IOUT = 6

IDERIV(1) = .FALSE.

C

C Optimization block (reverse communication)

C

IFAIL = 0

I = 0

1 CONTINUE

C============================================================

C This is the main block to compute all function values

C simultaneously. The block is executed either for computing

C a search direction or for approximating gradients by forward

C differences.

C

f = ((x(1) - 3.0d0)**2 - 10.0d0*x(1))

/ /(3.0d0*x(1) + x(2) + 1.0d0)

g(1) = 5.0d0*x(2) - (x(1) - 7.0d0)**2

g(2) = 1.8d0*x(2) - x(1)

C

C============================================================

IF (IFAIL.EQ.-1) GOTO 4

IF (I.GT.0) GOTO 3

2 CONTINUE

FBCK = F

DO J=1,M

GBCK(J) = G(J)

END DO

I = 0

5 I = I + 1

EPSREL = EPS*DMAX1(1.0D0,DABS(X(I)))

X(I) = X(I) + EPSREL

GOTO 1

3 CONTINUE

DF(I) = (F - FBCK)/EPSREL

DO J=1,M

DG(J,I) = (G(J) - GBCK(J))/EPSREL

END DO

X(I) = X(I) - EPSREL
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IF (I.LT.NCONT) GOTO 5

F = FBCK

DO J=1,M

G(J) = GBCK(J)

END DO

4 CONTINUE

C

CALL MISQP( M, ME, M, N, NBIN,

/ NINT, X, F, G, DF,

/ DG, XL, XU, ACC, MAXIT,

/ MNFS, MAXNDE, IPRINT, IOUT, IFAIL,

/ IDERIV, ROPT, IOPT, LOPT, RW,

/ LRW, IW, LIW, LW, LLW )

IF (IFAIL.EQ.-1) GOTO 1

IF (IFAIL.EQ.-2) GOTO 2

C

C End of main program

C

STOP

END

The following output should appear on screen:

--------------------------------------------------------------------

Start of the Mixed-Integer SQP Algorithm MISQP

Version 6.4 (Nov 2012)

--------------------------------------------------------------------

Parameters:

Number of all variables: 2 N

Number of continuous variables: 1 NCONT

Number of binary variables: 0 NBIN

Number of integer variables: 1 NINT

Number of all constraints: 2 M

Number of equality constraints: 0 ME

Termination accuracy: 0.100D-05 ACC

Maximum number of iterations: 100 MAXIT

Number of steps without progress: 100 MNFS

Maximum number of nodes: 1000 MAXNDE

Output level: 2 IPRINT

Non-default options:

Initial integer trust region radius: 0.700D+01 TRUSTI,ROPT( 7)

Output in the following order:

IT - iteration number

F - objective function value

MCV - maximum constraint violation

SIGMA - penalty parameter

IL - number inner loops

DMAXC - maximum norm of continuous step D_C

D1B - 1-norm of binary step DELTA_B

DMAXI - maximum norm of integer step D_I

IT F MCV SIGMA IL DMAXC D1B DMAXI

-----------------------------------------------------------------------

1 -0.10000D+01 0.10D+01 0.10D+04 1 0.31D+01 0.00D+00 0.10D+01
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2 -0.21093D+01 0.15D+00 0.10D+04 1 0.85D+00 0.00D+00 0.10D+01

3 -0.20194D+01 0.00D+00 0.10D+04 1 0.58D-01 0.00D+00 0.00D+00

4 -0.20220D+01 0.00D+00 0.10D+04 1 0.27D+00 0.00D+00 0.00D+00

5 -0.20310D+01 0.00D+00 0.10D+04 1 0.42D+00 0.00D+00 0.00D+00

6 -0.20369D+01 0.00D+00 0.10D+04 1 0.60D-01 0.00D+00 0.00D+00

7 -0.20370D+01 0.00D+00 0.10D+04 1 0.63D+00 0.00D+00 0.10D+01

8 -0.21647D+01 0.29D+00 0.10D+04 1 0.64D+00 0.00D+00 0.10D+01

9 -0.20370D+01 0.00D+00 0.10D+04 1 0.87D+00 0.00D+00 0.10D+01

--- FINAL CONVERGENCE ANALYSIS ---

Objective function value: F(X) = -0.20370364D+01

Approximation of solution: X =

0.43368425D+01 0.30000000D+01

Constraint function values: G(X) =

0.25508361D+00 0.10631575D+01

Distances from lower bounds: XL-X =

-0.33368425D+01 -0.20000000D+01

Distances from upper bounds: XU-X =

0.36631575D+01 0.50000000D+01

Number of function calls: NFUNC = 26

- within TR method: NF_TR = 9

- integer derivatives: NF_2D = 17

Number of gradient calls: NGRAD = 9

Number of calls of QP solver: NQL = 12

- 2nd order corrections: NQL2 = 0

Number of B&B nodes: NODES = 30

Termination reason: IFAIL = 0

--- UNSCALED VALUES ---

Objective function value: F(X) = -0.24444437D+01

Constraint function values: G(X) =

0.79075919D+01 0.10631575D+01
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