
NLPIP: A Fortran Implementation of an SQP-IPM Algorithm

for Solving Large-Scale Nonlinear Optimization Problems

- User’s Guide, Version 2.0 -

Authors : B. Sachsenberg, K. Schittkowski

Contact : K. Schittkowski
Siedlerstr. 3
95488 Eckersdorf
Germany

Phone: (+49) 921 32887

E-mail: klaus@schittkowski.de

Web: www.klaus-schittkowski.de

Date: October, 2013

Abstract

The Fortran subroutine NLPIP is designed to solve smooth and large-scale nonlinear
optimization problems. The underlying algorithm is based on an SQP method, where the
quadratic programming subproblem is solved by a primal-dual interior point method. A
special feature of the algorithm is that the quadratic programming subproblem does not
need to get exactly solved. If the number of iterations is set to one, we obtain a standard
interior point method. To solve large optimization problems, either a limited-memory
BFGS update to approximate the Hessian of the Lagrangian function is applied or the
user specifies the Hessian by himself. The Jacobian of the constraints or, if available,
the Hessian of the Lagrangian function should be sparse. All necessary operations by
which these matrices are accessed through a so-called primal-dual system of equations,
are provided by a separate code called LINSLV, which is to be implemented by the user.
Interfaces for some existing linear solvers are available. Numerical results are included
for the small and dense Hock-Schittkowski problems, for large semi-linear elliptic control
problems after a suitable discretization, and for the cute-r test problem collection.

Keywords: large-scale optimization, nonlinear programming, IPM, interior point method, SQP,
sequential quadratic programming method, merit function, non-monotone line search, numerical
algorithm, Fortran code

1

1 Introduction

We consider the nonlinear programming problem to minimize an objective function under
nonlinear equality and inequality constraints,

x ∈ IRn :

min f(x)

gj(x) = 0 , j = 1, . . . , me ,

gj(x) ≤ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu ,

(1)

where x is an n-dimensional parameter vector. It is assumed that all problem functions f(x)
and gj(x), j = 1, . . . , m, are twice continuously differentiable on the whole IRn.

To illustrate the underlying mathematical algorithm, we omit upper and lower bounds and
equality constraints to get, in a somewhat simpler notation, a problem of the form

x ∈ IRn :
min f(x)

g(x) ≤ 0 ,
(2)

where g(x) = (g1(x), . . . , gm(x))
T .

The basic idea is to mix a sequential quadratic programming (SQP) and an interior point
method (IPM) for nonlinear programming. In an outer loop, a sequence of quadratic program-
ming subproblems is constructed by approximating the Lagrangian function

L(x, u) := f(x) + uTg(x) (3)

quadratically and by linearizing the constraints. The resulting quadratic programming sub-
problem (QP)

d ∈ IRn :
min 1

2
dTH(xk, uk)d+∇f(xk)

Td

g(xk) +∇g(xk)d ≤ 0
(4)

is then solved by an interior point solver. Here, the pair (xk, uk) denotes the current iterate
in the primal-dual space, H(xk, uk) denotes the Hessian of the Lagrangian function (3), i.e.,
H(xk, uk) = ∇xxL(xk, uk), or a suitable approximation, and ∇g(xk) is the Jacobian matrix of
the vector of constraints. We call xk ∈ IRn the primal and uk ∈ IRm the dual variable or the
multiplier vector, respectively. The index k is an iteration index and stands for the k-th step
of the optimization algorithm.

Sequential quadratic programming methods became popular during the late 70’s. Since
then, there are numerous modifications and extensions have been published on SQP methods.
Nice review papers are given by Boggs and Tolle [2] and Gould and Toint [9]. All optimization
textbooks have chapters on SQP methods, see, for example, see Fletcher [7], Gill, Murray and

2

Wright [8], and Sun and Yuan [22]. A widely used Fortran code has been implemented by
Schittkowski [21] and is called NLPQLP.

An alternative approach is the interior point method (IPM) developed in the 90’s, see, e.g.,
Griva et al. [11], There are numerous alternative algorithms and implementations available
differing especially by their stabilization approaches, by which convergence towards a stationary
point can be guaranteed, see, e.g., Byrd, Gilbert, and Nocedal [3].

The underlying strategy consists of replacing the constrained optimization problem (2) by
a simpler one without inequality constraints,

x ∈ IRn, s ∈ IRm :
min f(x)− μ

∑m
j=1 log(sj)

g(x) + s = 0 .
(5)

Here, s > 0 denotes a vector of m slack variables, where the positivity has to be guaranteed
separately. The smaller the so-called barrier term μ is, the closer are the solutions of both
problems. It is essential to understand that we now have n+m primal variables x and s, and
in addition m dual variables u ∈ IRm, the multipliers of the equality constraints of (5). Since,
however, these multiplier approximations are also used to approximate the multipliers of the
inequality constraints of (2), we also require that u > 0 throughout the algorithm.

By constructing a sequence of systems of linear equations, where each one is called a primal-
dual system, a series of iterates toward the solution is approximated, see, for example, Byrd,
Gilbert, and Nocedal [3]. The primal-dual system is given by⎛

⎜⎜⎜⎝
Hk ∇g(xk)

T 0

∇g(xk) −Bk I

0 Sk Uk

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

dxk

duk

dsk

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎝
∇f(xk) +∇g(xk)

Tuk

g(xk) + sk − Ckuk

Skuk − μke

⎞
⎟⎟⎟⎠ . (6)

Here, k denotes the actual iteration index and xk, sk, and uk are the primal and dual
iterates. Sk and Uk are positive diagonal matrices containing the vectors sk and uk along the
diagonal. Bk, Ck ∈ IRm×m are positive diagonal regularization matrices and I denotes the
identity matrix. Moreover, we introduce e = (1, ..., 1)T ∈ IRm. The barrier term μk introduced
in (6), is internally adapted and depends on the iteration index k.

A step length αk > 0 along dk = (dxk, d
s
k, d

u
k) is determined to achieve sufficient decrease of

a merit function and to get the next iterate

⎛
⎜⎝ xk+1

sk+1

uk+1

⎞
⎟⎠ =

⎛
⎜⎝ xk

sk
uk

⎞
⎟⎠+ αk

⎛
⎜⎝ dxk

dsk
duk

⎞
⎟⎠ (7)

where 0 < αk ≤ 1 and where sk+1 > 0 and uk+1 > 0 must be guaranteed. The matrix Hk

in (6) is either the Hessian matrix of the Lagrangian function L(xk, uk) or a corresponding
quasi-Newton matrix updated in each step.

3

In Section 2 we give a brief overview of the algorithm. The corresponding Fortran subroutine
is documented in Section 3. Some examples show how to implement an optimization problem,
see Section 4. Finally, we present numerical results in Section 5.

2 The Algorithm

In our situation, only the quadratic programming subproblem (4) is solved by an interior-point
method, i.e., we replace (4) by

dx ∈ IRn, ds ∈ IRm :
min 1

2
dxTH(xk, uk)d

x +∇f(xk)
Tdx − μ

∑m
j=1 log(d

s
j)

g(xk) +∇g(xk)d
x + ds = 0 .

(8)

The approximate primal and dual solution returned by an IPM solver depends on an internal
iteration index l and is denoted by dxk,l, dsk,l, and duk,l. They serve as search directions for
converging towards a solution of the nonlinear program (2). Note again that we can stop at
any iteration l we like, and get a standard IPM by leaving the inner loop after the first step.

Thus, the algorithm consists of two nested loops identified by two iteration indices k and l.
By xk, sk, and uk we denote the outer iterates of primal, slack, and dual variables, respectively,
k = 0, 1, 2, x0 is a user-provided starting point and u0 > 0, s0 > 0 are set by the algorithm.
The slack and multiplier variables must satisfy uk > 0 and sk > 0 in all subsequent steps.
Correspondingly, dxk,l, d

s
k,l > 0, and duk,l > 0 are the iterates of an inner cycle.

To get an SQP method, the inner loop continues until termination at an optimal solution
subject to a small tolerance. The outer loop requires an additional line search along the direction
obtained by the inner loop, to converge towards a stationary point.

On the other hand, a user may terminate the inner loop at any time, e.g., by setting
a small value for the maximum number of iterations. Thus, it is not required to solve the
quadratic subproblem exactly. If only one step is performed towards a solution of (4), a standard
IPM is obtained. A possible reason could be to solve very large optimization problems with
relatively fast function and gradient evaluation times, to avoid time-consuming linear algebra
manipulations of the internal QP solver.

The KKT optimality conditions of (8) lead to a primal-dual system of linear equations in
each inner loop, formulated now in the primal and the dual space analogously to (6),

⎛
⎜⎜⎜⎝

Hk ∇g(xk)
T 0

∇g(xk) −Bk,l I

0 Sd
k,l Ud

k,l

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

Δdxk,l

Δduk,l

Δdsk,l

⎞
⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎝

Hkd
x
k,l +∇f(xk) +∇g(xk)

Tduk,l

g(xk) +∇g(xk)d
x
k,l + dsk,l − Ck,ld

u
k,l

Sd
k,ld

u
k,l − μk,le

⎞
⎟⎟⎟⎠ . (9)

Here, k denotes the outer iteration index, l an inner iteration index, and xk, sk, and uk are
the outer iterates. Sd

k,l and Ud
k,l are positive diagonal matrices containing the vectors dsk and

4

duk along the diagonal. Bk,l, Ck,l ∈ IRm×m are positive diagonal regularization matrices. The
barrier term μk,l introduced in (9), is internally adapted and depends now in the iteration
indices k and l.

By solving (9), we get new iterates

dxk,l+1 = dxk,l + αk,lΔdxk,l ,

dsk,l+1 = dsk,l + αk,lΔdsk,l , (10)

duk,l+1 = duk,l + αk,lΔduk,l ,

where αk,l ∈ (0, 1] is a step length parameter. To simplify the analysis, we only mention that
in our implementation we distinguish between a primal and a dual step length. By reducing α,
we get an αk,l such that the inner iterates satisfy

duk,l+1 = duk,l + αk,lΔduk,l > 0 , dsk,l+1 = dsk,l + αk,lΔdsk,l > 0 . (11)

However, the search direction might be still too long and is to be reduced further to guarantee
the sufficient descent of a merit function

Φ̃μ,r(x, s, u, d
x, ds, du) , (12)

where μ is a barrier and r a penalty parameter which must be carefully chosen to guarantee a
sufficient descent property, i.e., at least

Φ̃μk,l,rk(xk, sk, uk,Δdxk,l,Δdsk,l,Δduk,l) ≤ Φ̃μk,l,rk(xk, sk, uk, 0, 0, 0) . (13)

The merit function Φ̃μ,r is closely related to the merit function one has to apply in the outer
cycle, see the example below. In the outer cycle, the step length parameter αk is adapted such
that a sufficient descent property subject to a merit function Φμ,r(x, s, u) is obtained, i.e., that
we are able to find a penalty parameter rk and, especially, a step size 0 < αk ≤ 1 with

Φμk ,rk(xk + αkd
x
k, sk + αkd

s
k, uk + αkd

u
k) ≤ Φμk ,rk(xk, sk, uk)

+ ν αk∇Φμk ,rk(xk, sk, uk)
T

⎛
⎜⎜⎜⎝

dxk

dsk

duk

⎞
⎟⎟⎟⎠

(14)

where ν > 0 is a given constant. Note that the inner product on the right-hand side of the
inequality is always negative.

To give an example, we consider the the l2-merit function

Φμ,r(x, s, u) := f(x)− μ
m∑
i=1

log si + r‖g(x) + s‖2 (15)

5

with μ, r ∈ IR, see, e.g., Chen and Golfarb [4], and neglect iteration indices for a moment.. By
replacing f(x) by 1

2
dTHd+∇f(x)Td and g(x) by g(x) +∇g(x)d, we obtain

Φ̃μ,r(x, s, u, d
x, ds, du) = ∇f(x)Tdx+ 1

2
dxTHdx−μ

m∑
i=1

log(si+dsi)+r‖g(x)+∇g(x)dx+s+ds‖2 ,
(16)

i.e., its counterpart used for solving the quadratic programming subproblem, see (12) and (13).
Another merit function is the so-called flexible penalty function of Curtis and Nocedal [5],

which is default in NLPIP,

Φμ,r(x, s, u) = f(x)− μ
m∑
i=1

log si +
r1 + r2

2
r3 +min

{
r1(‖g(x) + s‖2 − r3),
r2(‖g(x) + s‖2 − r3)

}
(17)

with r = (r1, r2, r3) and

r1 ≤ r2 ,

r3 = ‖g(x+ s‖2 .

For r1 = r2, (17) and (16) are equivalent. Similar to (16), the counterpart for solving the
quadratic programming subproblem is derived. Note that both merit functions do not depend
on the multiplier vector u ∈ IRm in contrast to the so-called augmented Lagrangian merit
functions.

The algorithm can be summarized now as follows:

Algorithm 2.1 1. Choose starting values z0 = (x0, u0, s0) with u0 > 0 and s0 > 0 and some
internal constants.

2. For k := 0, 1, 2, . . .

(a) Check stopping criteria based on the KKT conditions. If satisfied, then return.

(b) Choose starting values dxk,0, d
s
k,0, and duk,0

(c) For l := 0, 1, 2, . . . , lmax do

i. Determine a barrier parameter μk,l and suitable scaling matrices Bk,l and Ck,l.

ii. Solve the primal-dual system of linear equations (9) and determine a step length
parameter αk,l ∈ (0, 1] which satisfy (11) and (13).

iii. Compute new internal iterates dxk,l+1, d
s
k,l+1, and duk,l+1 by (10).

iv. If termination criteria for the QP (4) are satisfied, e.g., either KKT conditions
or l = lmax, let μk := μk,l+1, d

x
k := dxk,l+1, d

s
k := dsk,l+1, and duk := duk,l+1 and break

for-loop.

(d) Find a step length αk such that the sufficient decrease property (14) is satisfied.

6

(e) Set xk+1 := xk + αkd
x
k, sk+1 := sk + αkd

s
k, uk+1 := uk + αkd

u
k.

Here, lmax > 0 is a given maximum number of iterations of the inner cycle. The primal and
dual stepsize parameters are always greater than zero and less or equal to one. Note that the
feasibility condition (11) and the sufficient descent properties (13) and (14) are always satisfied
for a sufficiently small stepsize due to the specific choice of the merit function, the barrier and
the penalty parameter, and especially the structure of the primal-dual system (9). This can be
achieved, e.g., by successive reduction until the corresponding inequalities are satisfied.

The primal-dual system (9) can be reduced further by exploiting that

Δdsk,l = U−1
k,l (μk,le− Sk,lΔduk,l)− Sk,lΔduk,l (18)

to get a smaller reduced KKT system(
Hk ∇g(xk)

T

∇g(xk) −Sk,lU
−1
k,l − Bk,l

)(
Δdxk,l
Δduk,l

)
= −

(
Hkd

x
k,l +∇f(xk) +∇g(xk)

Tduk,l
g(xk) +∇g(xk)d

x
k,l + μk,lU

−1
k,l e− Ck,ld

u
k,l

)
(19)

for determining Δdxk,l, Δduk,l, and, by (18), Δdsk,l. The barrier parameter μk,l must be care-
fully updated, e.g., by the Mehrota predictor-corrector method developed originally for linear
programming, see Nocedal et.al [15] for the nonlinear programming formulas.

The matrix Hk in (9) or (19), respectively, could be the Hessian matrix of the Lagrangian
function (3), if available. However, to guarantee the sufficient descent properties discussed
before and to allow an efficient solution of the system of linear equations (9), Hk = ∇2

xL(xk, uk)
has to be positive definite for all k. Since this property cannot be satisfied in general, a typical
modification is to add positive values to the diagonal, i.e., to let Hk = ∇2

xL(xk, uk)+Wk, where
Wk is a positive diagonal matrix with suitable weights. To solve large-scale problems, it must
be assumed in this case that ∇2

xL(xk, uk) is sparse.
Alternatively, it is possible to replace the Hessian matrix of the Lagrangian function by a

quasi Newton matrix. Since, however, standard update methods lead to a fill-in, it is possible
to apply a limited memory BFGS update, see e.g., Liu and Nocedal [6] or Waltz et.al [24].

The standard BFGS method stores the whole matrix which is updated in every iteration by
the rule

Hk+1 := Hk +
akak

T

bk
Tak
− Hkbkbk

THk

bk
THkbk

(20)

with

ak := ∇xL(xk+1, uk+1)−∇xL(xk, uk+1)

bk := xk+1 − xk

Usually, we start with a scaled unit matrix for H0 and stabilize the formula by requiring that

aTk bk ≥ 0.2 bTkHkbk ,

7

see Powell [16] or Schittkowski [19].
The idea of the limited memory BFGS update is to store only the last p pairs of vectors

∇xL(xk+1−i, uk−i)−∇xL(xk−i, uk−i), xk+1−i − xk−i

for i = 0, . . . , p − 1 with 0 < p � n. These pairs of vectors are used to implicitly construct
an approximation of the Hessian matrix at xk+1 and uk+1. Instead of storing O(n2) double
precision numbers for a full update, one has to keep only O(pn) numbers in memory.

To illustrate limited memory BFGS update in short, we omit the iteration index k for
simplicity. Now, the BFGS matrix has the form

H = ξI +NMNT ,

where ξ > 0 is a scaling factor, N is a n × 2p matrix, and M is a 2p × 2p matrix. M and N
are directly computed from the p stored pairs of vectors and ξ.

To solve the linear system of equations (19) efficiently for different right-hand sides, we
write the inverse of the matrix in (19) in a more tractable form[(

ξI ∇g(x)T
∇g(x) −SU−1

)
+

(
N
0

)
(MNT 0)

]−1

(21)

=: [C + UV T]−1

= C−1 − C−1U(I + V TC−1U︸ ︷︷ ︸
∈IR2p×2p

)−1V TC−1

by the Sherman-Morrison-Woodbury formula. Instead of solving (19), we only have to solve the
system Cz = b several times with different right hand sides. Moreover, C has exactly the same
structure as the matrix H in (19) or, in other words, Hk = ξI in this case. Matrix I+V TC−1U
is only of size 2p× 2p and can be inverted at negligible costs.

3 Program Documentation

3.1 NLPIP

NLPIP is implemented in form of a FORTRAN subroutine, where function and gradient values
are computed within the calling routine of the user and passed to NLPIP by reverse communi-
cation. The following rules apply:

1. Choose starting values for the variables to be optimized, and store them in X.

2. Compute objective and all constraint function values, store them in F and G, respectively.

3. Compute gradients of objective function and all constraints, and store them in DF and
DG, respectively.

8

4. Set IFAIL=0 and execute NLPIP.

5. If NLPIP returns with IFAIL=-1, compute objective function and constraint values for
all variable values in X, store them in F and G, and call NLPIP again.

6. If NLPIP terminates with IFAIL=-2, compute gradient values with respect to the variable
values in X, store them in DF and DG, and call NLPIP again.

7. If NLPIP terminates with IFAIL=0, the internal stopping criteria are satisfied. WORK(1)
passes the norm of the KKT vector to the calling program and WORK(2) the maximum
constraint violation. In case of IFAIL>0, an error occurred.

The user also has to provide a Function called LINSLV which is responsible for various opera-
tions concerning the Jacobian of the constraints and for solving the reduced KKT system , see
Section 3.2 for details.

Note that NLPIP calls some LAPACK [1] routines and must be linked to this library.

Usage:

CALL NLPQLP(M, ME, LDG, N, X,
/ F, G, DF, DG, Y,
/ SL, XL, XU, ACTIVE, P,
/ ACC, ACCQP, MAXFUN, MAXIT, MNFS,
/ IPRINT, IOUT, IPARAM, IFAIL, STEPP,
/ WORK, LWORK, IWORK, LIWORK)

Parameter Definition:

M : Number of all constraints without bounds of variables.
ME : Number of equality constraints.

LDG : Number of non-zero elements of the Jacobian of constraints, DG.

N : Number of optimization variables.

X(N) : When calling NLPIP the first time, X has to contain starting values
for the optimal solution. On return, X is replaced by the current
iterate. In the driving program, the dimension of X has to be at
least N.

9

F Objective function value at X.

G(M) Constraint function values at X. In the driving program, the di-
mension has to be at least M.

DF(N) Gradient of the objective function at X.

DG(LDG) Jacobian of the constraint functions at X. Only non-zero elements
are to be passed to subroutine LINSLV.

Y(M+2N) On return, Y contains the multipliers with respect to the current
iterate stored in X. The first M entries contain the multipliers of
the M constraints given by G, the subsequent N entries contain the
multipliers of the lower bounds, and the last N entries the multi-
pliers of the upper bounds.

SL(M+2N) On return, SL contains the slack variables with respect to the cur-
rent iterate stored in X. The first ME entries are undefined. The
subsequent M-ME entries contain the slacks of the inequality con-
straints as given in G.

XL(N) Lower bounds for X.
XU(N) Upper bounds for X, where a lower bound has to be less than an

upper bound.

ACTIVE(M+2N) Logical array to indicate constraints active at the current iterate.
The first M entries correspond to the M constraints given in G, the
subsequent N entries correspond to the lower bounds and the last
N entries to the upper bounds.

P Maximum number of pairs of vectors stored for limited memory
BFGS updates. Typical values are in the range from 3 to 20.

ACC The user has to specify the desired termination accuracy. ACC
should not be much smaller than the accuracy by which gradients
are computed.

ACCQP Accuracy for solving the internal quadratic programming problem.
ACCQP should be smaller than ACC and greater than the machine
precision.

MAXFUN : The integer variable defines an upper bound for the number of
function calls during the line search (e.g. 20). MAXFUN must not
exceed 50.

10

MAXIT : Maximum number of outer iterations, where one iteration corre-
sponds to one formulation and solution of the quadratic program-
ming subproblem, or, alternatively, one evaluation of gradients (e.g.
100).

MNFS : Maximum number of feasible steps without improvements, where
the relative change of objective function values and feasibility is
measured by ACC. Must be greater than 1.

IPRINT : Specification of the desired output level.

0 - no output

1 - initial and final messages

2 - one line displayed for each main iteration

3 - additional messages about QP solution

4 - information about QP iterates and line search

5 - additional warnings

IOUT : Positive integer indicating the desired output unit number, i.e., all
write-statements start with ’WRITE(IOUT,... ’.

IPARAM(20) : Integer parameter vector of length 20 to control execution. Subse-
quent positions not specified in advance, must get -100, and missing
parameters are reserved for later use. Parameter values might get
changed internally, so do not modify them between successive iter-
ations.

IPARAM(1): General algorithmic structure, i.e.,

0 - LM-BFGS updates (default)

1 - Hessian matrix of the Lagrangian provided

IPARAM(2): Merit function
1 - L2 penalty

2 - flexible penalty (default)

IPARAM(3): Starting value for penalty updates of merit function, i.e.,

<>0 - exponent, i.e., 10**IPARAM(3), between -10 and 10

0 - 1.0 (default)

IPARAM(4): Exponent of initial barrier parameter μ, i.e., μ=10**IPARAM(4),

where -10 <IPARAM(4)< 2 (default: -3)

IPARAM(5): Update of barrier parameter μ

11

1 - if cKKT < 5μ, then μ← 0.1μ (default)

2 - if cKKT < 5μ, then μ← 0.01μ

3 - if cKKT < 5μ, then μ← min(0.2cKKT , c
1.5
KKT)

4 - μ← min(0.2cKKT , μ)

where cKKT denotes the norm of the KKT vector

IPARAM(6): Infinity measure 10**IPARAM(5), where 5<IPARAM(6)< 50 (de-
fault: 20)

IPARAM(7): Number of QP iterations, internally adapted (default 10). If set to
1, only one QP step per outer iteration will be made correspond-
ing to a standard interior point method. In this case, however,
the number of QP iterations might become increased if a descent
direction is not achieved.

IPARAM(8): Step-length reduction factor, i.e., the line search will reduce the
step-length by 1/IPARAM(8) until sufficient decrease property of
the merit function is achieved (default 5). The parameter is in the
range from 2 to 20.

The subsequent tolerances are passed to QPSLV:

IPARAM(11): Predictor-corrector method
1 - enable predictor step (default)

2 - use equal step lengths

4 - always use central step

8 - enable corrector step

IPARAM(12): Minimum μ value:

1 - ACC/100

2 - μ/100

3 - mu2

4 - predetermined constant (10−8, default)

IPARAM(13): Update rule for sigma:

1 - constant (default)

2 - minimize violation of KKT condition
IPARAM(14): Regularization strategy (default 18):

0 - no regularization

12

1 - standard regularization

2 - ‖g(x) + s‖
3 - λ− y

4 - (g(x) + s)2

5 - ‖g(x) + s‖2
8 - regularize inequality constraints

16 - regularize right hand side

32 - regularize by vector instead of a single scalar

64 - automatic choice of regularization parameter

128 - constant regularization

IPARAM(17): Starting values for slack variable SL, multiplier Y,

and internal search direction DL (default 1):

0 - predetermined in the calling program

1 - set internally to reduce complementary gap

2 - same rules as specified by Vanderbei [23]

The remaining positions are not yet used and should not be
changed.

IFAIL : The parameter shows the reason for terminating a solution process.
Initially, IFAIL must be set to zero. On return, IFAIL contains one
the following values:

-2 - Compute new gradient values and call NLPIP again.

-1 - Compute new function values and call NLPIP again.

0 - Optimality conditions are satisfied.

1 - Stop after MAXIT iterations.

2 - No descent direction found for merit function.
3 - Local infeasibility or MFCQ failure detected.

4 - Line search failed, e.g., due to inaccurate derivatives.

5 - Length of a working array too short.

6 - False dimensions, M>LDG or N<0.

7 - Wrong entry in parameter field IPARAM.

8 - Starting point violates lower or upper bound.

9 - Wrong input parameter, e.g., N, M, IPRINT, IOUT, etc.

10 - Objective or constraint function unbounded.

13

11 - NaN found in model function values.
12 - Termination due to more than MNFS steps without improve-
ments of feasible function values.
>100 - Error in LINSLV, more details with IPRINT>0.

STEPP : Double precision scalar allowing reduction of step size after the first
iteration. Must not become less than 0 or greater than 1 and has
to be 1 on start.

WORK(LWORK) : Double precision working array of length LWORK. On return,
WORK(1) contains the final norm of the KKT vector.

LWORK : Length of WORK, has to be at least at least

32*N + 20*M + 6*P*N + 2*P*M + 8*P*P + 2*P + 100.

IWORK(LIWORK) : Integer working array of length LIWORK.

LIWORK : Length of integer work array, must be at least 3*P + 100.

Note that depending on the error message, more information is displayed or written to the
output channel in case of IPRINT>0.

Some of the termination reasons are enforced by insufficient accuracy of gradient values, in
particular if computed by a difference formula. If we assume that all functions and gradients
are computed within machine precision and that the implementation is correct, there remain
the following possibilities that could cause an error message:

• The termination parameter ACC is too small, so that the numerical algorithm plays
around with round-off errors without being able to improve the solution. Especially the
approximation of the Hessian matrix of the Lagrangian function becomes unstable in this
case. A straightforward remedy is to restart the optimization cycle again with a larger
stopping tolerance.

• The constraints are contradicting, i.e. the set of feasible solutions is empty. There is no
way to find out whether a general nonlinear and non-convex set possesses a feasible point
or not. Thus, the nonlinear programming algorithms will proceed until running in any of
the mentioned error situations. In this case, the correctness of the model must be very
carefully checked.

• Constraints are feasible, but some of them there are degenerate, for example if some of
the constraints are redundant. One should know that SQP algorithms assume the satis-
faction of the so-called constraint qualification, i.e., that gradients of active constraints
are linearly independent at each iterate and in a neighbourhood of an optimal solution.
In this situation, it is recommended to check the formulation of the model constraints.

However, some of the error situations also occur if, especially due to inaccurate gradients, the
solution of the quadratic programming subproblem or the primal-dual system (9), respectively,
does not yield a descent direction for the underlying merit function. In this case, one should

14

try to improve the accuracy of function evaluations, scale the model functions in a proper way,
or start the algorithm from other initial values.

A possible reason for reducing the step size could be to prevent non-computable function
values, e.g., if the function evaluation in the calling program contains a logarithm to be taken
for a negative variable value. STEPP must be set ot one when calling NLPIP the first time.

NLPIP must be linked to to the calling routine of the user, subroutine LINSLV, see below,
the LAPACK [1] numerical algebra library, and a linear equation solver, e.g., PARDISO. LA-
PACK may be downloaded from the Netlib repository, see netlib.org. We recommend to use a
LAPACK library of your Fortran compiler, if available. In addition, the code must be linked
to the calling routine of the user,

3.2 LINSLV

Subroutine LINSLV serves to organize sparsity patterns of the Jacobian of the constraints and,
in case of IPARAM(1)=1, of the Hessian matrix of the Lagrangian function. All accesses
to the matrix of the primal dual system (19), i.e., the specification of sparsity patterns, the
factorization, the solution of the system of equations subject to different right-hand sides, etc.,
are involved and must be provided by the user.

Usage:

CALL LINSLV(MODE, M, LDG, NHRS, N, IP, DG, A, B)

Note that some arrays serve for in- and output.

Parameter Definition:

MODE : Selection of one of the operations listed below.

M : Total number of constraints.
LDG : Length of array DG containing non-zero elements of the Jacobian

of constraints.
NRHS : Number of right-hand sides for which a solution of (9) or (21) is

requested.

N : Number of optimization variables.

IP : Integer depending on MODE, also used to export error codes, re-
ported as 100+IP by NLPIP.

15

DG(LDG) Jacobian of the constraint functions at X. The data can be of any
format as provided by the user and must match the definition of
DG as passed to NLPIP.

A(MAX(N,M)) In- and output array depending on MODE.

B(N+M,NRHS) In- and output array depending on MODE.

To illustrate the internal operations depending on the value of MODE, let u ∈ IRn, v ∈ IRm,
σ ∈ {−1, 1}, and z, b ∈ IRn+m.

MODE=1: Multiply transpose of the Jacobian matrix with a vector,

σ ∇g(x)Tv + u , (22)

where σ := IP , u := A and v := B. In simpler notation, compute IP ·DGT · B +A and store
the result in A, where IP=+1 or IP=-1.

MODE=2: Multiply Jacobian matrix with a vector,

σ ∇g(x)u+ v , (23)

where σ := IP , v := A and u := B. In an equivalent notation, compute IP ·DG · B + A and
store the result in A, where IP=+1 or IP=-1.

MODE=3: Multiply i-th row of the Jacobian matrix with a vector,

∇gi(x)u , (24)

where i := IP and u := B, is compute the product of the IP ’th row of DG times B and store
the result in A(1).

MODE=4: Factorize the reduced KKT matrix (19)(
H(x, u) +DA ∇g(x)T
∇g(x) −DB

)
z = b (25)

where DA := diag(A) and DB := diag(B) (= SU−1) are positive diagonal matrices. If
IPARAM(1)=1, then H(x, u) is the Hessian matrix of the Lagrangian function, i.e., H(x, u) =
∇xxL(x, u), see (3), otherwise H(x, u) = 0. diag(A) and diag(B) are diagonal matrices, where
the diagonal elements are the coefficients of the vectors A and B, respectively. Factorization
data must be stored internally depending on the applied linear algebra solver.

MODE=5: Same as for MODE=4, but only the diagonal entries are changed and an available
factorization generated by a previous call of LINSLV with MODE=4 may be reused.

16

MODE=6: Solve the linear system (25)(
H(x, y) +DA ∇g(x)T
∇g(x) −DB

)
z = b (26)

subject to z, whereH(x, y) is either the Hessian matrix of the Lagrangian function, if IPARAM(1)=1,
or zero, if IPARAM(1)=0. DA and DB are positive diagonal matrices. An available factoriza-
tion generated by a previous call of LINSLV with MODE=4 may be reused.

MODE=7 Same as for MODE=6, but solve the linear system with NRHS multiple right-
hand sides all stored in B.

MODE=8 Compute H(x, u) ·B and store the result in A, where H(x, u) is the user provided
Hessian. This mode is executed only if IPARAM(1)=1.

When factorizing the reduced KKT system, one hat to take into account that the underlying
interior point method generates entries of DB tending to zero, while others tend to infinity. Also
some of the entries of DA may tend to infinity. The coefficients of both DA and DB are all
nonnegative.

4 Example

To give an example, we consider the following problem,

x ∈ IR3 :

min −x1x2x3

g1(x) = −x1 − 2x2 − 2x3 ≤ 0 ,

g2(x) = −72 + x1 + 2x2 + 2x3 ≤ 0 ,

0 ≤ xi ≤ 100, i = 1, 2, 3

The Fortran source code calling NLPIP is listed below, where the initial penalty parameter
is set to exp(9). Gradients are given in analytical form. We use a dense Jacobian and solve
the KKT system with PARDISO, see e.g., Schenk and Gärtner [17], as part of Intel’s MKL.
Other examples that also demonstrate the use of sparse matrices, are shipped together with
the NLPIP code.

PROGRAM NLPIP_DEMOB

IMPLICIT NONE

INTEGER N, M, LDG, MNN2, LWA, LKWA, P

PARAMETER (N = 3,

/ M = 2,

/ P = 7,

17

/ LDG = 6,

/ MNN2 = M + N + N + 2,

/ LWA = 32*N + 20*M + 6*P*N + 2*P*M

/ + 8*P*P + 2*P + 100,

/ LKWA = 3*P + 100)

INTEGER KWA(LKWA), IFAIL, IPRINT, IOUT, MAXFUN, MAXIT,

/ IPARAM(20), I

DOUBLE PRECISION X(N), ACC, ACCQP, STEPP, F, G(M), DF(N), DG(LDG),

/ Y(MNN2), SL(MNN2), XL(N), XU(N), WA(LWA)

LOGICAL ACTIVE(MNN2)

C

C Set some constants and initial values

C

IFAIL = 0

IPRINT = 2

IOUT = 6

MAXFUN = 20

MAXIT = 200

ACC = 1.0D-10

ACCQP = 1.0D-16

STEPP = 1.0D0

DO I=1,N

X(I) = 10.0D0

XL(I) = 0.0D0

XU(I) = 42.0D0

END DO

DO I=1,20

IPARAM(I) = -100

END DO

1 CONTINUE

C==

C This block computes all function values.

C

F = -X(1)*X(2)*X(3)

G(1) = -X(1) - 2.0D0*X(2) - 2.0D0*X(3)

G(2) = -72.0D0 + X(1) + 2.0D0*X(2) + 2.0D0*X(3)

C

C==

IF (IFAIL.EQ.-1) GOTO 4

2 CONTINUE

C==

C This block computes all derivative values.

C

DF(1) = -X(2)*X(3)

18

DF(2) = -X(1)*X(3)

DF(3) = -X(1)*X(2)

DG(1) = -1.0D0

DG(2) = 1.0D0

DG(3) = -2.0D0

DG(4) = 2.0D0

DG(5) = -2.0D0

DG(6) = 2.0D0

C

C==

4 CONTINUE

CALL NLPIP (M, 0, LDG, N, X,

/ F, G, DF, DG, Y,

/ SL, XL, XU, ACTIVE, P,

/ ACC, ACCQP, MAXFUN, MAXIT, IPRINT,

/ IOUT, IPARAM, IFAIL, STEPP, WA,

/ LWA, KWA, LKWA)

IF (IFAIL.EQ.-1) GOTO 1

IF (IFAIL.EQ.-2) GOTO 2

C

STOP

END

C

C ***

C * LINSLV interface routine based on PARDISO

C ***

C

SUBROUTINE LINSLV(MODE, M, LDG, NRHS, N, IP, DG, A, B)

IMPLICIT NONE

INTEGER MODE, M, LDG, N, NRHS, IP

DOUBLE PRECISION DG, A, B

DIMENSION DG(LDG), A(M*N+M+N), B((M+N)*NRHS)

C

C Local parameters

C

DOUBLE PRECISION W, SUM

INTEGER IW

DIMENSION W(100), IW(100)

INTEGER I, J, NM

COMMON /RLINSLV/ W

COMMON /ILINSLV/ IW

C

C Switch

C

19

NM = N + M

GOTO (1,2,3,4,5,6,6), MODE

C==

C Compute A = IP*DG’*B + A

C

1 CONTINUE

DO I=1,N

SUM = 0.0D0

DO J=1,M

SUM = SUM + DG(M*(I-1)+J)*B(J)

END DO

A(I) = DBLE(IP)*SUM + A(I)

END DO

RETURN

C==

C Compute A = IP*DG*B + A

2 CONTINUE

DO J=1,M

SUM = 0.0D0

DO I=1,N

SUM = SUM + DG(M*(I-1)+J)*B(I)

END DO

A(J) = DBLE(IP)*SUM + A(J)

END DO

RETURN

C==

C Compute A(1) = (IP’th row of DG)*B

C

3 CONTINUE

A(1) = 0.0D0

DO I=1,N

A(1) = A(1) + DG(M*(I-1)+IP)*B(I)

END DO

RETURN

C==

C Factorize (full)

C

4 CONTINUE

CALL LINSL1(1, M, N, LDG, A, B, DG, W(2*(N+M)+1), IW,

/ W, W(N+M+1), IP)

RETURN

C==

C Factorize (diag update)

C

20

5 CONTINUE

CALL LINSL1(2, M, N, LDG, A, B, DG, W(2*(N+M)+1), IW,

/ W, W(N+M+1),IP)

RETURN

C==

C Solve B=C\B

C

6 CONTINUE

DO J = 1, NRHS

CALL LINSL1(3, M, N, LDG, A, B, DG, W(2*(N+M)+1), IW,

/ B(NM*(J-1)+1), W(N+M+1), IP)

END DO

C

RETURN

END

C

C ***

C * Auxiliary routine LINSL1 for LINSLV

C ***

C

SUBROUTINE LINSL1(MODE, M, N, LDG, D1, D2, DG, A, P, B, X, IP)

IMPLICIT NONE

INTEGER MODE, M, N, LDG, P, IP

DOUBLE PRECISION D1, D2, DG, A, B, X

DIMENSION D1(N), D2(M), DG(LDG), A(M*N+M+N)

DIMENSION P(64+2*(N+M)+(N+1)*(M+1)), B(N+M), X(N+M)

INTEGER I, J

INTEGER*8 PT(64)

DATA (PT(I),I=1,64) /

/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

/ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0/

SAVE PT

INTEGER IPERM, NM, IIA, IJA

C

IPERM = 65

NM = N + M

IIA = IPERM + NM

IJA = IIA + NM + 1

GOTO (1,2,3), MODE

C==

C Build upper right part of the symmetric KKT matrix in CSR format...

C (diag(D1) : DG^T)

21

C (DG : -diag(D2))

C

1 CONTINUE

DO I=1,N

P(IIA+I-1) = 1 + (I-1)*(1+M)

P(IJA+(I-1)*(1+M)) = I

A(1+(I-1)*(1+M)) = D1(I)

DO J=1,M

P(IJA+(I-1)*(1+M)+J) = N + J

A(1+(I-1)*(1+M)+J) = DG((I-1)*M+J)

C A(1+(I-1)*(1+M)+J) = DG(J,I)

END DO

END DO

DO I=1,M

P(IIA+N+I-1) = N*(1+M) + I

P(IJA+N*(1+M)+I-1) = N + I

A(N*(1+M)+I) = -D2(I)

END DO

P(IIA+N+M) = N*(1+M) + M + 1

C ... and factorize it

CALL IFILL(64, 0, P, 1)

P(1) = 1

P(2) = 0

P(5) = 0

P(8) = 20

P(10) = 8

P(11) = 1

P(13) = 1

P(18) = -1

P(21) = 1

CALL PARDISO(PT, 1, 1, -2, 12, NM, A, P(IIA), P(IJA),

/ P(IPERM), 1, P, 0, B, X, IP)

RETURN

C==

C Update diagonal entries

C

2 CONTINUE

DO I=1,N

A(1+(I-1)*(1+M)) = D1(I)

END DO

DO I=1,M

A(N*(1+M)+I) = -D2(I)

END DO

CALL PARDISO(PT, 1, 1, -2, 22, NM, A, P(IIA), P(IJA),

22

/ P(IPERM), 1, P, 0, B, X, IP)

RETURN

C==

C Solve factorized system

C

3 CONTINUE

CALL PARDISO(PT, 1, 1, -2, 33, NM, A, P(IIA), P(IJA),

/ P(IPERM), 1, P, 0, B, X, IP)

CALL DCOPY(NM, X, 1, B, 1)

C

RETURN

END

The subsequent output is generated:

Start of the IPM/SQP Algorithm NLPIP for Large-Scale Optimization

Version 2.0 (Jul 2013)

Parameter Values:

M = 2

ME = 0

LDG = 6

N = 3

P = 7

ACC = 0.1000D-09

ACCQP = 0.1000D-11

MAXFUN = 20

MAXIT = 100

MNFS = 2

IPRINT = 2

IOUT = 6

Output in the following order:

IT - iteration number

F - objective function value

MCV - maximum constraint violation

NA - number of active constraints

I - number of line search iterations

ALPHA - steplength parameter

KKT - Karush-Kuhn-Tucker optimality criterion

23

IT F MCV ALPHA |D| KKT

--

1 -0.10000000D+04 0.00D+00 0.00D+00 0.00D+00 0.42D+02

2 -0.17494811D+04 0.00D+00 0.10D+01 0.32D+02 0.31D+03

3 -0.32661433D+04 0.00D+00 0.10D+01 0.12D+02 0.26D+02

4 -0.33618792D+04 0.00D+00 0.10D+01 0.12D+02 0.76D+01

5 -0.34540311D+04 0.00D+00 0.10D+01 0.54D+01 0.30D+00

6 -0.34559844D+04 0.00D+00 0.10D+01 0.64D+00 0.40D-02

7 -0.34560000D+04 0.00D+00 0.10D+01 0.61D-01 0.14D-04

8 -0.34560000D+04 0.00D+00 0.10D+01 0.85D-03 0.10D-06

9 -0.34560000D+04 0.00D+00 0.10D+01 0.10D-05 0.10D-08

10 -0.34560000D+04 0.00D+00 0.10D+01 0.11D-10 0.50D-11

--

The following solution was found:

X(1), X(2), ... = 0.24000000D+02 0.12000000D+02 ...

Objective function = -0.34560000D+04

Max constraint violation = 0.00000000D+00

5 Numerical Test Results

We solve all test problems with the same set of tolerances and parameters, which are internally
stored as default values and which are accessed by predefining -100 in IPARAM(20). The
maximum number of iterations is 500. Moreover, the number of recursive LM-Quasi-Newton
updates is p = 7. The Fortran codes are compiled by the Intel Visual Fortran Compiler, Version
11.0, 64 bit, under Windows 7 and Intel(R) Core(TM) i7-2720 CPU, 2.2 GHz, with 8 GB RAM.

5.1 Elliptic Optimal Control Problems with Control and State Con-
straints

Maurer and Mittelmann [13, 14] published numerical results to compare some large-scale opti-
mization codes on a certain class of test problems obtained by discretizing semi-linear elliptic
optimal control problems with control and state constraints.

The two-dimensional elliptic equations are discretized by a scalable rectangular grid of size
N in x- and y-direction, where the following abbreviations are used in Table 1:

24

prob n m nfunc ngrad f(x�) r(x�) cKKT (x
�) time

EX 1 10,197 9,801 13 13 0.19652520 0.38E-14 0.21E-08 32.9
EX 2 10,197 9,801 19 19 0.09669517 0.38E-14 0.81E-08 39.1
EX 3 10,197 9,801 12 12 0.32100999 0.33E-14 0.11E-08 25.9
EX 4 10,197 9,801 12 12 0.24917886 0.38E-14 0.25E-08 23.5
EX 5 10,593 10,197 15 15 0.55224625 0.73E-10 0.11E-08 36.1
EX 6 10,593 10,197 21 21 0.01507905 0.11E-08 0.11E-08 42.9
EX 7 10,593 10,197 18 16 0.26389870 0.26E-11 0.11E-08 36.6
EX 8 10,593 10,197 17 15 0.16166432 0.23E-10 0.17E-08 32.8
EX 9 19,602 9,801 15 15 0.06216416 0.87E-13 0.12E-08 44.1
EX 10 19,602 9,801 20 20 0.05645702 0.23E-15 0.10E-08 188.0
EX 11 19,602 9,801 15 15 0.11026722 0.84E-13 0.11E-08 33.4
EX 12 19,998 10,197 20 20 0.07806690 0.27E-10 0.50E-08 48.7
EX 13 19,998 10,197 25 25 0.05267343 0.82E-13 0.24E-08 101.6

Table 1: Test Results for Semilinear Elliptic Control Problems

prob test problem identifier,
n number of optimization variables passed to NLPIP,
m number of equality constraints,
nfunc number of function evaluations,
ngrad number of gradient evaluations,
f(x�) objective function value at termination point x�

r(x�) maximum constraint violation at termination point x�

cKKT (x
�) KKT convergence criterion at x�

time total CPU time in seconds
One function evaluation consists of the computation of one objective function value and m

constraint function values. Derivatives are available in analytical form.
We apply the IPM version of NLPIP, and request the default parameter settings of all

options. The number of limited-memory quasi-Newton steps is p = 7. The subsequent table
contains results obtained for IPARAM(7)=1, i.e., the number of internal iterations to solve the
QP is set to one and the algorithm behaves like a standard IPM method. Grid size is N = 100
in both directions, maximum number of iterations is 200 and termination accuracy is set to
10−8.

5.2 Small and Dense HS-Problems

We evaluate the performance of NLPIP on the set of 306 small-scale, but often highly nonlinear
test problems of Hock and Schittkowski [12, 20], and compare the results to the solver NLPQLP,
a dense implementation of an SQP-method, see Schittkowski [18, 19].

NLPIP is called with default parameters, forward differences for gradient approximations,

25

code nsucc nfunc ngrad time

NLPIP (p = 7) 300 48 23 1.2
NLPIP (p = 70) 299 28 17 3.0
NLPQLP 306 35 20 0.3

Table 2: Test Results for 306 Hock-Schittkowski Problems

and termination accuracy 10−5. In Table 2, we present results for p = 7 and p = 70.
NLPIP needs about the same number of iterations and function evaluations when compared

to NLPQLP. Since the quadratic programming problem is iteratively solved by NLPIP, average
computation times are higher, especially in case of a large number of limited-memory updates.

5.3 The CUTEr Collection

A large number of test problems for nonlinear programming has been collected and programmed
a so-called Standard Input Format (SIF), from which, e.g., Fortran code is generated, see Gould,
Orban, and Toint [10]. The library is widely used for developing and testing optimization
programs, and consists of small- and large-scale problems. Derivatives are available in analytical
form.

For our purposes, we selected 34 test problems with 5,000 or more variables. The problems
are identified by their internal serial number and a identifying name. They only possess equality
constraints with four exceptions. Numerical results are listed in Table 3 for default parameter
settings and p = 7. Termination accuracy is 10−6.

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.
Greenbaum, S. Hammarling, A. McKenney, D. Sorensen (1999): LAPACK Users’ Guide,
Society for Industrial and Applied Mathematics, Philadelphia, PA

[2] Boggs P.T., Tolle J.W. (1995): Sequential quadratic programming, Acta Numerica, Vol.
4, 1 - 51

[3] Byrd R.H., Gilbert J.C., Nocedal J. (2000): A trust region method based on interior point
techniques for nonlinear programming, Mathematical Programming Vol. 89, 149–185

[4] Chen L., Goldfarb D. (2009): An interior-point piecewise linear penalty method for non-
linear programming, Mathematuical Programming, Vol. 10, 1-50.

[5] Curtis F.E., Nocedal J. (2008): Flexible penalty functions for nonlinear constrained opti-
mization, Journal of Numerical Analysis, Vol. 28, 335-351

26

no prob n m me nfunc ngrad f(x�) r(x�) time

53 GILBERT 5,000 1 1 53 37 0.2459470E+04 0.33E-06 17.5
222 BRAINPC0 6,907 6,900 6,900 68 38 0.1499973E-02 0.93E-06 86.2
223 BRAINPC1 6,907 6,900 6,900 42 31 0.1450644E-08 0.31E-07 70.2
224 BRAINPC2 13,807 13,800 13,800 15 12 0.7058297E-03 0.56E-06 36.2
225 BRAINPC3 6,907 6,900 6,900 17 14 0.2792666E-03 0.14E-06 19.5
226 BRAINPC4 6,907 6,900 6,900 577 177 0.1292671E-02 0.33E-06 503.5
227 BRAINPC5 6,907 6,900 6,900 16 12 0.2333637E-02 0.25E-07 17.4
228 BRAINPC6 6,907 6,900 6,900 18 15 0.1864842E-03 0.45E-06 20.2
229 BRAINPC7 6,907 6,900 6,900 277 96 0.3862754E-04 0.78E-06 229.6
230 BRAINPC8 6,907 6,900 6,900 327 117 0.1784133E-03 0.84E-06 367.6
231 BRAINPC9 6,907 6,900 6,900 96 40 0.3516188E+00 0.86E-06 113.2
232 CAR2 5,999 4,996 3,996 151 77 0.2666182E+01 0.10E-05 194.4
235 CLNLBEAM 60,003 40,000 40,000 9 9 0.3500000E+03 0.16E-08 61.5
236 CORKSCRW 45,006 35,000 30,000 28 25 0.9810425E+02 0.18E-12 518.0
237 COSHFUN 6,001 2,000 0 1,578 500 -0.7732396E+00 0.00E+00 409.4
240 DRUGDIS 6,004 4,000 4,000 59 42 0.4278234E+01 0.25E-09 64.2
241 DTOC1NA 5,998 3,996 3,996 12 12 0.4138914E+01 0.34E-06 2.8
242 DTOC1NB 5,998 3,996 3,996 15 14 0.7138852E+01 0.61E-07 3.6
243 DTOC1NC 5,998 3,996 3,996 17 14 0.3519935E+02 0.27E-06 3.9
244 DTOC1ND 5,998 3,996 3,996 36 23 0.4760303E+02 0.59E-06 6.8
245 DTOC2 5,998 3,996 3,996 76 47 0.5074931E+00 0.59E-06 14.4
247 DTOC5 9,999 4,999 4,999 95 95 0.1531073E+01 0.97E-06 42.0
248 DTOC6 10,001 5,000 5,000 21 20 0.1348504E+06 0.26E-06 10.2
255 JUNKTURN 10,010 7,000 7,000 595 295 0.1716158E-02 0.67E-06 200.6
267 OPTMASS 60,010 50,005 40,004 85 27 -0.2409747E-01 0.11E-09 350.3
269 ORTHRDM2 8,003 4,000 4,000 17 15 0.3110153E+03 0.25E-08 13.1
270 ORTHRDS2 5,003 2,500 2,500 181 104 0.3288840E+04 0.77E-06 51.1
271 ORTHREGA 8,197 4,096 4,096 87 57 0.2660367E+05 0.12E-08 58.8
273 ORTHREGC 5,005 2,500 2,500 191 84 0.9481310E+02 0.11E-07 44.7
274 ORTHREGD 5,003 2,500 2,500 142 94 0.3289923E+04 0.85E-06 52.4
275 ORTHREGE 7,506 5,000 5,000 99 59 0.1278650E+04 0.13E-08 68.4
277 ORTHRGDM 10,003 5,000 5,000 397 206 0.1110009E+05 0.56E-06 260.3
278 ORTHRGDS 5,003 2,500 2,500 2,046 467 0.8946430E+04 0.96E-06 245.1
281 READING5 5,001 5,000 5,000 60 31 -0.2543357E-14 0.11E-12 72.6

Table 3: Test Results for cuter-Problems, n ≥ 5000

27

[6] Liu D.C., Nocedal J. (1989): On the limited memory BFGS method for large-scale opti-
mization, Mathematical Programming, Vol. 45, 503-528

[7] Fletcher R. (1987): Practical Methods of Optimization, John Wiley, Chichester

[8] Gill P.E., Murray W., Wright M. (1982): Practical Optimization, Academic Press, London

[9] Gould N.I.M, Toint Ph.L. (1999): SQP methods for large-scale nonlinear programming,,
Proceedings of the 19th IFIP TC7 Conference on System Modelling and Optimization:
Methods, Theory and Applications, pp. 149–178.

[10] Gould N.I.M., Orban D., Toint Ph.L. (2005): General CUTEr documentation, CERFACS
Technical Report TR/PA/02/13, 2005

[11] Griva I., Shanno D.F., Vanderbei R.J., Benson H.Y. (2008): Global convergence of a
primal-dual interior-point method for nonlinear programming, Algorithmic Operations
Research, Vol. 3, 12–19

[12] Hock W., Schittkowski K. (1983): A comparative performance evaluation of 27 nonlinear
programming codes, Computing, Vol. 30, 335-358

[13] H. Maurer, H.D. Mittelmann (2000): Optimization techniques for solving elliptic control
problems with control and state constraints, Part 1: Boundary control, Computational
Optimization and Applications, Vol. 16, 29-55

[14] H. Maurer, H.D. Mittelmann (2001): Optimization techniques for solving elliptic control
problems with control and state constraints, Part 2: Distributed control, Computational
Optimization and Applications, Vol. 18, 141-160

[15] Nocedal J., Wächter A., Waltz R.A. (2006): Adaptive barrier strategies for nonlinear
interior methods, Technical Report RC 23563, IBM T.J. Watson Research Center

[16] Powell M.J.D. (1978): A fast algorithm for nonlinearly constraint optimization calcula-
tions, in: Numerical Analysis, G.A. Watson ed., Lecture Notes in Mathematics, Vol. 630,
Springer, Berlin

[17] Schenk O., Gärtner K. (2006): On fast factorizing pivoting methods for symmetric indef-
inite systems, Electronic Transactions on Numerical Analysis, Vol. 23, 158-179

[18] K. Schittkowski (1983): On the convergence of a sequential quadratic programming method
with an augmented Lagrangian search direction, Optimization, Vol. 14, 197-216

[19] K. Schittkowski (1985/86): NLPQL: A Fortran subroutine solving constrained nonlinear
programming problems, Annals of Operations Research, Vol. 5, 485-500

28

[20] K. Schittkowski (1987): More Test Examples for Nonlinear Programming, Lecture Notes
in Economics and Mathematical Systems, Vol. 182, Springer

[21] K. Schittkowski (2009): NLPQLP: A Fortran implementation of a sequential quadratic
programming algorithm with distributed and non-monotone line Search - User’s guide,
Version 3.0, Report, Department of Computer Science, University of Bayreuth (2009)

[22] Sun W.Y., Yuan Y. (2006) Optimization Theory and Methods: Nonlinear Programming,
Springer, New York

[23] Vanderbei R.J. (1999): LOQO: An interior point code for quadratic programming, Opti-
mization Methods and Software, Vol. 11, 451-484

[24] Waltz R.A., Morales J.L., Novedal J., Orban D. (2006): An interior algorithm for non-
linear optimization that combines line search and trust region steps, Mathematical Pro-
gramming, Vol. 107, 391-408

29

	Introduction
	The Algorithm
	Program Documentation
	NLPIP
	LINSLV

	Example
	Numerical Test Results
	Elliptic Optimal Control Problems with Control and State Constraints
	Small and Dense HS-Problems
	The CUTEr Collection

