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Abstract

The Fortran subroutine NLPL1 solves constrained nonlinear programming
problems, where the sum of absolute nonlinear function values is to be mini-
mized. It is assumed that all functions are continuously differentiable. By in-
troducing additional variables and nonlinear inequality constraints, the prob-
lem is transformed into a general smooth nonlinear program subsequently
solved by the sequential quadratic programming (SQP) code NLPQLP. The
usage of the code is documented, and two illustrative examples are presented.
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1 Introduction

L, optimization problems arise in many practical situations, for example in ap-
proximation or when fitting a model function to given data in the L;-norm. In this
particular case, a mathematical model is available in form of one or several equa-
tions, and the goal is to estimate some unknown parameters of the model. Exploited
are available experimental data, to minimize the distance of the model function, in
most cases evaluated at certain time values, from measured data at the same time
values. An extensive discussion of data fitting especially in case of dynamical sys-
tems is given by Schittkowski [3], and the code NLPL1 is part of the software system
EASY-FIT.
The mathematical problem we want to solve, is given in the form

min Y, |fi(x)|
gi(x)=0, 7=1,...,m, ,

re R": (@) ‘ (1)
gj(x)zoaj:me+17"'ama

rn<z<ux, .

It is assumed that f1, ..., fy and g, ..., g, are continuously differentiable functions.

In this paper, we consider the question how an existing nonlinear programming
code can be used to solve constrained L; optimization problems in an efficient and
robust way after a suitable transformation. In a very similar way, also L., min-max
and least squares problems can be solved efficiently by an SQP code, see Schitt-
kowski [3, 6, 8, 9].

The transformation of a min-max problem into a special nonlinear program is
described in Section 2. Sections 3 to 5 contain a documentation of the Fortran code
and two example implementations.

2 The Transformed Optimization Problem

We consider the constrained nonlinear L; problem (1), and introduce 2/ additional
variables zy, ..., 29y and 2[ additional nonlinear inequality constraints of the form
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1 =1, ..., l. The following equivalent problem is to be solved by an SQP method,

min z

gj(x) =0 , J=1me

gj(x) >0 , J=me+1,...,m
(x,2) € R filw)+z>0 , i=1,....0, (3)

—file)+ 2 >0 , i=1,...,1,

1 <X < Ty, ;

z>0

In this case, the quadratic programming subproblem wich has to be solved in each
step of an SQP method, has the form

min $(d”, e) By < Z ) +e

Vgi(ar)Td+ gi(xr) =0 L i=1,...,me. ,
V(i) d+ gj(xg) >0 , j=me+1,...,m ,
(d,¢) € 1 Vi) Td+ e+ fi(ze) +28 >0  , i=1,...,1,
V(o) d+ ey — filag) + 28, >0, i=1,...,1,

r— 2 <d <3y —Tp ;

e>0

(4)
By, € R™™ x IR™! is a quasi-Newton update matrix of the Lagrangian function of
(3). A new iterate is then obtained from

Tpp1 = T +apdy , Zpp1 = 2 + ey

where dj, € IR™ and e, € IR are a solution of (4) and a4 a steplength parameter
obtained from forcing a sufficient descent of a merit function.

The proposed transformation (3) is independent of the SQP method used, so
that available codes can be used in the form of a black box. Our implementation

calls the code NLPQLP [7].

3 Calling Sequence
In this section, we describe the arguments of subroutine NLPL1 in detail.

Usage:



CALL NLPLI (

o T T T T

M, ME, LMMAX, L, N,
LLN1, LLMNN2, X, FUNC, RES,
GRAD, U, XL, XU, ACC,
ACCQP, RESSIZ, MAXFUN MAXIT, MAXNM,
RHOB, IPRINT, IOUT,  IFAIL, WA,
LWA, KWA,  LKWA, LOGWA, LLOGWA )

Definition of the parameters:

ME :
LMMAX :

L:
N:
LLNT1 :

LLMNN2 :

X(LLN1) :

FUNC(LMMAX) :

RES :

GRAD(LMMAX,N) :

Number of constraints, i.e., m.

Number of equality constraints, i.e., m..

Row dimension of GRAD and dimension of FUNC. LM-
MAX must be at least one and not smaller than L + M.
Number of terms in objective function, i.e., [.

Number of variables, i.e., n.

Dimensioning parameter for X, XL, and XU, must be equal
to 2*L + N + 1.

Dimensioning parameter, must be set to M + 2*N + 6*L
+ 2 when calling NLPL1.

On input, the first N positions of X have to contain an
initial guess for the solution. On return, X is replaced by
the last computed iterate.

Function values passed to NLPL1 by reverse communica-
tion, i.e., the first L positions contain the L residual values
filz), i =1, ..., 1, the subsequent M coefficients the con-
straint values g;(x), j =1, ... ;m.

On return, RES contains the final objective function value
@) + ..+ [fil@)].

The array is used to pass gradients of residuals and con-
straints to NLPL1 by reverse communication. In the driv-
ing program, the row dimension of GRAD must be equal to
LMMAX. The first L rows contain L gradients of residual
functions Vf;(z) at z, i = 1, ..., [, the subsequent M rows
gradients of constraint functions Vg;(z), j =1, ..., m.



U(LLMNN2) :

XL(LLN1),
XU(LLN1) :
ACC :

ACCQP :

RESSIZE :
MAXFUN :

MAXIT :

MAXNM :

RHOB :

[PRINT :

On return, U contains the multipliers with respect to the
last computed iterate. The first M locations contain the
multipliers of the M nonlinear constraints, the subsequent
N locations the multipliers of the lower bounds, and the
following N locations the multipliers of the upper bounds.
At an optimal solution, all multipliers with respect to in-
equality constraints should be nonnegative.

On input, the one-dimensional arrays XL and XU must
contain the upper and lower bounds of the variables.

The user has to specify the desired final accuracy (e.g.
1.0D-7). The termination accuracy should not be much
smaller than the accuracy by which gradients are com-
puted.

The tolerance is passed to the QP solver to perform several
tests, for example whether optimality conditions are satis-
fied or whether a number is considered as zero or not. If
ACCQP is less or equal to zero, then the machine precision
is computed by NLPQLP and subsequently multiplied by
10.0.

The user must indicate a guess for the approximate size of
the objective function. RESSIZE must not be negative.

The integer variable defines an upper bound for the number
of function calls during the line search (e.g. 20).

Maximum number of outer iterations, where one itera-
tion corresponds to one formulation and solution of the
quadratic programming subproblem, or, alternatively, one
evaluation of gradients (e.g. 100).

Stack size for storing merit function values at previous it-
erations for non-monotone line search (e.g. 10).
Parameter for initializing a restart in case of IFAIL=2 by
setting the BEGS-update matrix to rhob*I, where I denotes
the identity matrix. The number of restarts is bounded by
MAXFUN. No restart is performed if RHOB is set to zero.
Must be non-negative (e.g. 100).

Specification of the desired output level:



10UT :

[FAIL :

WA (LWA) :
LWA :

KWA(LKWA) :
LKWA :

0 - No output of the program.

1 - Only final convergence analysis.

2 - One line of intermediate results for each iteration.

3 - More detailed information for each iteration.

4 - More line search data displayed.

Integer indicating the desired output unit number, i.e., all
write-statements start with "WRITE(IOUT,... ".

The parameter shows the reason for terminating a solution
process. Initially IFAIL must be set to zero. On return
IFAIL could contain the following values:

-2 - Compute new gradient values.

-1 - Compute new function values.

0 - Optimality conditions satisfied.

1 - Stop after MAXIT iterations.

2 - Uphill search direction.

3 - Underflow when computing new BFGS-update matrix.

4 - Line search exceeded MAXFUN iterations.

5 - Length of a working array too short.

6 - False dimensions, M>MMAX, N>NMAX, or
MNN2#M+N+N+-2.

7 - Search direction close to zero at infeasible iterate.

8 - Starting point violates lower or upper bound.

9 - Wrong input parameter, e.g., MODE, IPRINT, IOUT.

10 - Inconsistency in QP, division by zero.

>100 - Error message of QP solver.

WA is a real working array of length LWA.

Length of the real working array WA. LWA must be at

least

5¥(N+2)*(N+2)/2 + MW*NMAX + 9*MW + 6*LMAX

+ 4*MMAX + 35*NMAX + 200,

where MW = max(M+L,min(MOUT ,M+L+L)). MOUT

is an internal bound set to 500.

KWA is an integer working array of length LKWA.

Length of the integer working array KWA. LKWA must

be at least 2*MW + max(N+1,MW/NMAX) + 25. On re-

turn, KWA(1) and KWA(2) contain the number of function

and derivative evaluations, respectively.



LOGWA(LLOGWA) :  Logical working array of length LLOGWA.
LLOGWA : Length of the logical array LOGWA. The length LLOGWA

4

of the logical array must be at least 9*L + 5*M + 11.

Program Organization

All declarations of real numbers must be done in double precision. Subroutine
NLPL1 must be linked with the user-provided main program, the SQP code NLPQLP
[7], and the quadratic programming code QL [5].

NLPL1 is implemented in form of a Fortran subroutine. Model functions and
gradients are passed by reverse communication. The user has to provide functions
and gradients in the same program which executes NLPL1, according to the following

rules:

1.

8.

Choose starting values for the variables to be optimized, and store them in
the first N positions of X.

. Compute residual and constraint function values values, and store them in a

one-dimensional double precision array FUNC. The first L positions contain
the L residual values fi(z), i = 1, ..., [, the subsequent M coefficients the
constraint values g;(z), j =1, ..., m.

Compute gradients of residual and constraint functions, and store them in
a two-dimensional double precision array GRAD. The first L rows contain
gradients of residual functions V f;(z) at =, ¢ = 1, ..., [, the subsequent M
rows gradients of constraint functions Vg;(x), j =1, ..., m.

Set IFAIL=0 and execute NLPLI.

. If NLPL1 returns with IFAIL=-1, compute residual function values and con-

straint values for the arguments found in X, and store them in FUNC in the
order shown above. Then call NLPL1 again, but do not change IFAIL.

. If NLPL1 terminates with IFAIL=-2, compute gradient values subject to vari-

ables stored in X, and store them in GRAD as indicated above. Then call
NLPL1 again without changing IFAIL.

If NLPL1 terminates with IFAIL=0, the internal stopping criteria are satisfied.
The variable values found in X are considered as a local solution of the min-
max optimization problem.

In case of IFAIL>0, an error occurred.

If analytical derivatives are not available, additional function calls are required
for gradient approximations, for example by forward differences, two-sided differ-
ences, or even higher order formulae.



Some of the termination reasons depend on the accuracy used for approximat-
ing gradients. If we assume that all functions and gradients are computed within
machine precision and that the implementation is correct, there remain only the
following possibilities that could cause an error message:

1. The termination parameter ACC is too small, so that the numerical algorithm
plays around with round-off errors without being able to improve the solution.
Especially the Hessian approximation of the Lagrangian function becomes un-
stable in this case. A straightforward remedy is to restart the optimization
cycle again with a larger stopping tolerance.

2. The constraints are contradicting, i.e., the set of feasible solutions is empty.
There is no way to find out, whether a general nonlinear and non-convex set
possesses a feasible point or not. Thus, the nonlinear programming algorithms
will proceed until running in any of the mentioned error situations. In this
case, there the correctness of the model must be checked very carefully.

3. Constraints are feasible, but some of them there are degenerate, for example
if some of the constraints are redundant. One should know that SQP algo-
rithms require satisfaction of the so-called constraint qualification, i.e., that
gradients of active constraints are linearly independent at each iterate and in
a neighborhood of the optimal solution. In this situation, it is recommended
to check the formulation of the model.

However, some of the error situations do also occur, if because of wrong or non-
accurate gradients, the quadratic programming subproblem does not yield a descent
direction for the underlying merit function. In this case, one should try to improve
the accuracy of function evaluations, scale the model functions in a proper way, or
start the algorithm from other initial values.

5 Examples

To give a simple example how to organize the code in case of two explicitly given
functions, we consider Rosenbrock’s banana function, see test problem TP1 of Hock

and Schittkowski [1],
T, 29 € IR : min|10(zy — 23)| + |1 — 24 (5)

The Fortran source code for executing NLPL1 is listed below. Gradients are com-
puted analytically.

IMPLICIT NONE
INTEGER N, M, L, LLMNN2, LMMAX, LLN1, LLM, LWA,
/ LKWA, LLOGWA



PARAMETER (L=2,N=2,M=0)

PARAMETER (LMMAX =M + L,
/ LIN1 = 2xL + N + 1,
/ LLM = 2xL + M,
/ LLMNN2 = LLM+2*LLN1,
/ LWA = 5*xLLN1*%2/2 + LLM#LLN1 + 35*LLN1
/ + 9*LLM + 150,
/ LKWA = LLN1 + 25,
/ LLOGWA = 2+LLM + 10)
INTEGER ME, MAXFUN, MAXIT, IPRINT, MAXNM, IOUT, IFAIL,
/ KWA
DOUBLE PRECISION X, FUNC, RES, GRAD, U, XL, XU, ACC,
/ ACCQP, RESSIZ, RHOB, WA, EPS, T, Y, W
DIMENSION X(LLN1), FUNC(LMMAX), GRAD(LMMAX,N),
/ U(LLMNN2), XL(LLN1), XU(LLN1),
/ WA(LWA) , KWA(LKWA), LOGWA(LLOGWA)
LOGICAL LOGWA
EXTERNAL QL
C
C set parameters
C
ME =0
ACC = 1.0D-8
ACCQpP = ACC
RESSIZ = 0.0DO
RHOB = 0.0DO
MAXFUN = 20
MAXIT = 100
MAXNM 0
IPRINT = 2
IOUT =6
IFAIL =0
C
C starting values and bounds
C
X(1) = -1.2D0
XL(1) = -1.0D5
Xu(1) = 1.0D5
X(2) = 1.0D0
XL(2) = -1.0D5
XU(2) = 1.0D5
C
C execute NLPL1 by reverse communication
C

1 CONTINUE
IF ((IFAIL.EQ.O0).OR.(IFAIL.EQ.-1)) THEN



FUNC(1) = 10.0D0*(X(2) - X(1)*x2)
FUNC(2) = 1.0D0 - X(1)
ENDIF

IF ((IFAIL.EQ.O).OR.(IFAIL.EQ.-2)) THEN
GRAD(1,1) = -20.0D0*X(1)
GRAD(1,2) = 10.0DO
GRAD(2,1) = -1.0DO

GRAD(2,2) = 0.0DO
ENDIF
C
C call NLPL1
C
CALL NLPL1(M, ME, LMMAX, L, N, LLN1, LLMNN2, X, FUNC, RES,
/ GRAD, U, XL, XU, ACC, ACCQP, RESSIZ, MAXFUN, MAXIT,
/ MAXNM, RHOB, IPRINT, IOUT, IFAIL, WA, LWA, KWA,
/ LKWA, LOGWA, LLOGWA, QL)
IF (IFAIL.LT.O0) GOTO 1
C
STOP
END

The following output should appear on screen:

Parameters:
N = 6
M 4
ME = 0
MODE = 0
ACC = 0.1000D-07
ACCQP = 0.1000D-07
STPMIN = 0.1000D-07
MAXFUN = 20
MAXNM = 0
MAXIT = 100
IPRINT = 2

OQutput in the following order:

IT - iteration number

F - objective function value

SCV - sum of constraint violations

NA - number of active constraints

I - number of line search iterations
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ALPHA - steplength parameter

DELTA - additional variable to prevent inconsistency

KKT

- Karush-Kuhn-Tucker optimality criterion

O N O O W N -

.00000000D+00
.16515464D+01
.13428041D+01
.77912492D+00
.49100689D+00
.14406132D-01
.00000000D+00
.00000000D+00

O O O O O O o o

.66D+01
.30D+01
.95D+00
.37D+01
.32D+01
.23D+01
.21D-02
.00D+00
*x* WARNING: Zero search direction at feasible
The final iterate may not be optimal!

-—-- Final Convergence Analysis at Last

Objective function value:

Sol

ution values:

0.10000000D+01
0.00000000D+00
Multiplier values:
0.00000000D+00
0.00000000D+00
0.10000000D+01
0.00000000D+00
Constraint values:
0.00000000D+00
Distance from lower bound:

o O

o O O O

0.

X
.10000000D+01
.00000000D+00

U
.00000000D+00
.00000000D+00
.10000000D+01
.00000000D+00

G(X)
00000000D+00 O
XL-X

F(X)

o O O O

ALPHA DELTA KKT

.00D+00 0.00D+00 0.79D+01
.10D+01 0.00D+00 0.33D+00
.10D+01 0.00D+00 0.14D+01
.42D+00 0.00D+00 0.12D+01
.37D+00 0.00D+00 0.48D+00
.10D+01 0.00D+00 0.32D-01
.10D+01 0.00D+00 0.52D-09
.10D+01 0.00D+00 0.00D+00

point.

Iterate ——-

0.00000000D+00

.00000000D+00 0.00000000D+00

.00000000D+00
.10000000D+01
.00000000D+00
.00000000D+00

.00000000D+00

-0.10000100D+06 -0.10000100D+06 O.
0.00000000D+00 0.00000000D+00

Distance from upper bound:

Number of function calls:
Number of gradient calls:
Number of calls of QP solver:

XU-X

0.99999000D+05 0.99999000D+05 O
0.10000000D+31 0.10000000D+31

NFUNC
NGRAD
NQL

00000000D+00

.10000000D+31

10

—--- Final Convergence Analysis of NLPL1 --—-

Maximum function value:

Function values:

RES

F(X) =

11

O O O O

.00000000D+00
.10000000D+01
.00000000D+00
.00000000D+00
.00000000D+00

.00000000D+00

.10000000D+31

0.00000000D+00



0.00000000D+00 0.00000000D+00

Solution: X =
0.10000000D+01 0.10000000D+01
Multiplier values: U =
0.00000000D+00 0.00000000D+00 0.10000000D+01 0.10000000D+01
Number of function calls: NFUNC = 10
Number of derivative calls: NGRAD = 8

The error message is due to the exact calculation of the optimal solution.
To present a data fitting example, we consider a model function

h( t) .%'1(152 + .I'Qt)
r,t) = —-—"—=
’ 12 + x5t + 24

= (x1,...,74)7. The data are shown in the code below. In addition, we have two
equality constraints

h(z,t1) —y1 =0, Az, t11) —yn =0 .

The code and the corresponding screen output follow.

IMPLICIT NONE
INTEGER N, M, L, LLN1, LLM, LLMNN2, LMMAX, LWA,
/ LKWA, LLOGWA

PARAMETER (L=11, N =4, M = 2)

PARAMETER (LMMAX =M + L,
/ LLN1 =N + 2L + 1,
/ LLM = M + 2xL,
/ LLMNN2 = LLM + 2+LLN1,
/ LWA = B*xLLN1**2/2 + LLM*LLN1 + 35%LLN1
/ + 9xLLM + 150,
/ LKWA = LLN1 + 15,
/ LLOGWA = 2*LLM + 10)

INTEGER ME,MAXFUN, MAXIT, IPRINT, MAXNM, IOUT, IFAIL,
/ KWA, I, J

DOUBLE PRECISION X, FUNC, RES, GRAD, U, XL, XU, ACC,
/ ACCQP, RESSIZ, RHOB, WA, EPS, T, Y, W
DIMENSION X(LLN1), FUNC(LMMAX), GRAD(LMMAX,N),
/ U(LLMNN2), XL(LLN1), XU(LLN1),
/ WA(LWA), KWA(LKWA), LOGWA(LLOGWA),
/ T(L), Y(L), w()

LOGICAL LOGWA

DATA T/0.0625D0,0.0714D0,0.0823D0,0.1000D0,0.1250D0,
/ 0.1670D0,0.2500D0,0.5000D0,1.0000D0,2.0000D0,
/ 4.0000D0/

DATA Y/0.0246D0,0.0235D0,0.0323D0,0.0342D0,0.0456D0,
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/ 0.0627D0,0.0844D0,0.1600D0,0.1735D0,0.1947D0,

/ 0.1957D0/
EXTERNAL QL
C
C set parameters
C
ME =M
ACC = 1.0D-10
ACCQP = 1.0D-14
RESSIZ = 1.0DO
RHOB = 0.0DO
MAXFUN = 20
MAXIT = 100
MAXNM = 20
IPRINT = 2
IOUT =6
IFAIL =0
C
C starting values and bounds
C
X(1) = 0.25D0
X(2) = 0.39D0
X(3) = 0.415D0
X(4) = 0.39D0
DOI=1,N
XL(I) = 0.0DO
XU(I) = 1.0D5
ENDDO
C
C execute NLPL1 in reverse communication
C
1 CONTINUE
IF ((IFAIL.EQ.O).OR.(IFAIL.EQ.-1)) THEN
DO J = 1,L
CALL H(T(J), Y(J), N, X, FUNC(J))
ENDDO

CALL H(T(1), Y(1), N, X, FUNC(L+1))
CALL H(T(L), Y(L), N, X, FUNC(L+2))

ENDIF
IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-2)) THEN
DO J = 1,L
CALL DH(T(J), N ,X, W)
DO I=1,N
GRAD(J,I) = W(I)
ENDDO
ENDDO

13



Q

Q

Q

Q

ca

/
/
/

CALL DH(T(1), N, X, W)
DO I=1,N

GRAD(L+1,I) = W(I)
ENDDO
CALL DH(T(L), N, X, W)
DO I=1,N

GRAD(L+2,I) = W(I)
ENDDO

ENDIF

11 NLPL1

CALL NLPL1(M, ME, LMMAX, L, N, LLN1, LLMNN2, X, FUNC, RES,
GRAD, U, XL, XU, ACC, ACCQP, RESSIZ, MAXFUN, MAXIT,
MAXNM, RHOB, IPRINT, IOUT, IFAIL, WA, LWA, KWA,
LKWA, LOGWA, LLOGWA, QL)

IF (IFAIL.LT.O0) GOTO 1

end of main program

STOP
END

data fitting function

SUBROUTINE H(T, Y, N ,X, F)
IMPLICIT NONE
INTEGER N

DOUBLE PRECISION T, Y, X(N), F
F = X(U)*T*(T + X(2))/(T*x*2 + X(3)*T + X(4)) - Y

RETURN
END

partial derivatives

SUBROUTINE DH(T, N ,X, DF)
IMPLICIT NONE
INTEGER N

DOUBLE PRECISION T, X(N), DF(N)

DF(1) = T*(T + X(2))/(T**2 + X(3)*T + X(4))

DF(2) = X(1)*T/(T**x2 + X(3)*T + X(4))

DF(3) = -X(1)*T**x2% (T + X(2))/(T**2 + X(3)*T + X(4))**2
DF(4) = -X(1)*T*(T + X(2))/(T*x2 + X(3)*T + X(4))**2

14



RETURN
END

Parameters:
N = 26
M = 24
ME = 2
MODE = 0
ACC = 0.1000D-09
ACCQP = 0.1000D-13
STPMIN = 0.1000D-09
MAXFUN = 20
MAXNM = 20
MAXIT = 100
IPRINT = 2

OQutput in the following order:

IT - iteration number

F - objective function value

SCV - sum of constraint violations

NA - number of active constraints

I - number of line search iterations

ALPHA - steplength parameter
DELTA - additional variable to prevent inconsistency

KKT - Karush-Kuhn-Tucker optimality criterion
IT F SCV NA I ALPHA DELTA KKT

1 0.22000000D+02 0.55D-01 24 0O 0.00D+00 0.00D+00 0.22D+02
2 0.46298100D-01 0.39D-01 14 1 0.10D+01 0.00D+00 0.48D-01
3 0.42617595D-01 0.31D-02 15 1 0.10D+01 0.00D+00 0.34D-02
4 0.42581346D-01 0.32D-04 14 1 0.10D+01 0.00D+00 0.13D-03
5 0.42521961D-01 0.11D-04 13 1 0.10D+01 0.00D+00 0.11D-03
6 0.42436528D-01 0.32D-04 14 1 0.10D+01 0.00D+00 0.46D-03
7 0.42030896D-01 0.70D-03 14 1 0.10D+01 0.00D+00 0.14D-02
8 0.41860422D-01 0.20D-03 13 1 0.10D+01 0.00D+00 0.41D-03
9 0.41796662D-01 0.42D-04 14 1 0.10D+01 0.00D+00 0.37D-03
10 0.41499749D-01 0.75D-03 14 1 0.10D+01 0.00D+00 0.14D-02
11 0.41264360D-01 0.57D-03 13 1 0.10D+01 0.00D+00 0.69D-03
12 0.41224676D-01 0.47D-04 14 1 0.10D+01 0.00D+00 0.67D-04
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13 0.41223394D-01
14 0.41223393D-01

0.88D-07
0.11D-12

15 1
17 1

0.10D+01
0.10D+01

--— Final Convergence Analysis at Best Iterate —-—-

Best result at iteration:
Objective function value:

Solution values:

0.
.00000000D+00
.00000000D+00
.00000000D+00
.44269623D-02
.00000000D+00
0.
Multiplier values:
0.
.10000000D+01
.00000000D+00
.00000000D+00
.10000000D+01
.00000000D+00
.00000000D+00
.10000000D+01
.10000000D+01
.10000000D+01
.00000000D+00
.10000000D+01
.10000000D+01
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00
0.
Constraint values:
.96693487D-14 -0.
.11831627D-13
.19900748D-13 -0.
.63560268D-14
.13482271D-13
.25918363D-01
Distance from lower bound:

O O O O O

O O O O O O O OO OO OoOoO o oo

18402828D+00

89998786D-38

15426936D+01

00000000D+00

o

O O O O O o o

O O O O O O O OO OO0 OoOOoOoO o oo

0.

0.
0.
0.

.11994003D+01
.00000000D+00
.20896387D-02
.82307563D-38
.32372012D-38
.10469247D-37
.00000000D+00

.23508590D+00
.00000000D+00
.10000000D+01
.00000000D+00
.10000000D+01
.10000000D+01
.00000000D+00
.10000000D+01
.00000000D+00
.30178161D+00
.10000000D+01
.23147299D+00
.10000000D+01
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00

ITER
F(X)
X

O O O O O O

[8)

O O O O O OO OO OO0 OoOOoOoO oo oo

G(X)
63560268D-14 -
40973874D-02
20254631D-13
96693487D-14
15370517D-13
18257097D-13
XL-X

O O O O O o

-0.18402828D+00 -0.11994003D+01 -0
0.00000000D+00 0.00000000D+00 -0
0.00000000D+00 -0.20896387D-02 -0
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.75456942D+00
.36239189D-03
.95968093D-38
.00000000D+00
.40973874D-02
.00000000D+00

.00000000D+00
.00000000D+00
.00000000D+00
.10000000D+01
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00
.10000000D+01
.10000000D+01
.00000000D+00
.10000000D+01
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00

.96693487D-14
.13513002D-02
.29773494D-02
.10697172D-13
.20896387D-02
.12795320D-13

.75456942D+00
.36239189D-03
.95968093D-38

0.00D+00
0.00D+00

O O O O O O

O O O O O O OO OO OO0 OO oo oo

0.
-0.
-0.

0.
.19900748D-13
.63560268D-14

o

0.11D-06
0.15D-12

0.41223393D-01

.53893657D+00
.56478830D-38
.25918363D-01
.16530389D-38
.13513002D-02
.29773494D-02

.00000000D+00
.10000000D+01
.69821839D+00
.00000000D+00
.76852701D+00
.00000000D+00
.00000000D+00
.10000000D+01
.00000000D+00
.10000000D+01
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00
.00000000D+00

44269623D-02
17645607D-13
12795320D-13
36239189D-03

.53893657D+00
.56478830D-38
.25918363D-01



0.00000000D+00 -0.82307563D-38 0.00000000D+00 -0.16530389D-38
-0.44269623D-02 -0.32372012D-38 -0.40973874D-02 -0.13513002D-02
0.00000000D+00 -0.10469247D-37 0.00000000D+00 -0.29773494D-02
-0.89998786D-38 0.00000000D+00

Distance from upper bound: XU-X =
0.99999816D+05 0.99998801D+05 0.99999245D+05 0.99999461D+05
0.10000000D+31 0.10000000D+31 0.10000000D+31 0.10000000D+31
0.10000000D+31 0.10000000D+31 0.10000000D+31 0.10000000D+31
0.10000000D+31 0.10000000D+31 0.10000000D+31 0.10000000D+31
0.10000000D+31 0.10000000D+31 0.10000000D+31 0.10000000D+31
0.10000000D+31 0.10000000D+31 0.10000000D+31 0.10000000D+31
0.10000000D+31 0.10000000D+31

Number of function calls: NFUNC = 14

Number of gradient calls: NGRAD = 14

Number of calls of QP solver: NQL = 14

--- Final Convergence Analysis of NLPL1 ---

RES =
Function values: F(X) =
-0.96693487D-14 0.44269623D-02 -0.36239189D-03
0.13513002D-02 .20896387D-02 -0.19900748D-13
0.29773494D-02 .12795320D-13 -0.63560268D-14
Solution: X =
0.18402828D+00 0.11994003D+01 0.75456942D+00
Multiplier values: U=
0.15426936D+01 .23508590D+00 0.00000000D+00
0.00000000D+00 0.00000000D+00 0.10000000D+01

Maximum function value: 0.41223393D-01

0.40973874D-02

-0.25918363D-01

0.53893657D+00

0.00000000D+00
0.10000000D+01

0.00000000D+00 0.10000000D+01
Constraint values: G(X) =
-0.96693487D-14 -0.63560268D-14
Number of function calls: NFUNC = 14
Number of derivative calls: NGRAD = 14
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