
NLPLSQ: A Fortran Implementation of an

SQP-Gauss-Newton Algorithm for

Least-Squares Optimization

- User’s Guide -

Address: Prof. K. Schittkowski
Siedlerstr. 3
D - 95488 Eckersdorf
Germany

Phone: (+49) 921 32887

E-mail: klaus@schittkowski.de

Web: http://www.klaus-schittkowski.de

Date: March, 2016

Abstract

The Fortran subroutine NLPLSQ solves constrained least squares nonlin-
ear programming problems, where the sum of squared nonlinear functions is to
be minimized. It is assumed that all functions are continuously differentiable.
By introducing additional variables and nonlinear equality constraints, the
problem is transformed into a general smooth nonlinear program subsequently
solved by the sequential quadratic programming (SQP) code NLPQLP. It can
be shown that typical features of special purpose algorithms are retained, i.e.,
a combination of a Gauss-Newton and a quasi-Newton search direction. The
additionally introduced variables are eliminated in the quadratic programming
subproblem, so that calculation time is not increased significantly. Some com-
parative numerical results are included, the usage of the code is documented,
and two illustrative examples are presented.

Keywords: least squares optimization, data fitting, Gauss-Newton method, SQP,
sequential quadratic programming, nonlinear programming, numerical algorithms,
Fortran codes

1

1 Introduction

Nonlinear least squares optimization is extremely important in many practical situa-
tions. Typical applications are maximum likelihood estimation, nonlinear regression,
data fitting, system identification, or parameter estimation, respectively. In these
cases, a mathematical model is available in form of one or several equations, and the
goal is to estimate some unknown parameters of the model. Exploited are available
experimental data, to minimize the distance of the model function, in most cases
evaluated at certain time values, from measured data at the same time values. An
extensive discussion of data fitting especially in case of dynamical systems is given
by Schittkowski [30].

The mathematical problem we want to solve, is given in the form

x ∈ IRn :

min 1
2

∑l
i=1 fi(x)

2

gj(x) = 0 , j = 1, . . . , me ,

gj(x) ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu .

(1)

It is assumed that f1, . . ., fl and g1, . . ., gm are continuously differentiable.
Although many nonlinear least squares programs were developed in the past,

see Hiebert [13] for an overview and numerical comparison, only very few programs
were written for the nonlinearly constrained case, see, e.g., Holt and Fletcher [15],
Lindström [18], Mahdavi-Amiri and Bartels [20], or Fernanda et al. [7]. However,
the implementation of one of these or any similar special purpose code requires a
large amount of theoretical and numerical analysis.

In this paper, we consider the question how an existing nonlinear programming
code can be used to solve constrained nonlinear least squares problems in an efficient
and robust way. We will see that a simple transformation of the model under
consideration and subsequent solution by a sequential quadratic programming (SQP)
algorithm retains typical features of special purpose methods, i.e., the combination
of a Gauß-Newton search direction with a quasi-Newton correction. Numerical test
results indicate that the proposed approach is as efficient as special purpose methods,
although the required programming effort is negligible provided that an SQP code
is available.

In a very similar way, also L1, L∞, and min-max problems can be solved effi-
ciently by an SQP code after a suitable transformation, see Schittkowski [30, 33, 35].

The following section describes some basic features of least squares optimization,
especially some properties of Gauss-Newton and related methods. The transforma-
tion of a least squares problem into a special nonlinear program is described in
Section 3. We will discuss how some basic features of special purpose algorithms
are retained. The same ideas are extended to the constrained case in Section 4. In
Section 5, we summarize some comparative numerical results on a large set of test

2

problems. Sections 6 to 8 contain a complete documentation of the Fortran code
and two example implementations.

2 Least Squares Methods

First, we consider unconstrained least squares problems where we omit constraints
and bounds to simplify the notation,

min 1
2

∑l
i=1 fi(x)

2

x ∈ IRn .
(2)

These problems possess a long history in mathematical programming and are ex-
tremely important in practice, particularly in nonlinear data fitting or maximum
likelihood estimation, see, e.g., Björck [2] or Dennis [3]. Thus, a large number of
mathematical algorithms is available for solving (2).

To understand their basic features, we introduce the notation

F (x) = (f1(x), . . . , fl(x))
T

and let

f(x) =
1

2

l∑
i=1

fi(x)
2 .

Then
∇f(x) = ∇F (x)F (x) (3)

defines the Jacobian of the objective function with ∇F (x) = (∇f1(x), . . . ,∇fl(x)).
If we assume now that all functions f1, . . ., fl are twice continuously differentiable,
we get the Hessian matrix of f by

∇2f(x) = ∇F (x)∇F (x)T +B(x) , (4)

where

B(x) =
l∑

i=1

fi(x)∇2fi(x) . (5)

Proceeding from a given iterate xk, Newton’s method can be applied to (2) to
get a search direction dk ∈ IRn by solving the linear system

∇2f(xk)d+∇f(xk) = 0

or, alternatively,

∇F (xk)∇F (xk)
Td+B(xk)d+∇F (xk)F (xk) = 0 . (6)

Assume for a moment that

F (x�) = (f1(x
�), . . . , fl(x

�))T = 0

3

at an optimal solution x�. A possible situation is a perfect fit where model function
values coincide with experimental data. Because of B(x�) = 0, we neglect matrix
B(xk) in (6), see also (5). Then (6) defines the so-called normal equations of the
linear least squares problem

min ‖∇F (xk)
Td+ F (xk)‖

d ∈ IRn .
(7)

A new iterate is obtained by xk+1 = xk + αkdk, where dk is a solution of (7) and
where αk denotes a suitable steplength parameter. It is obvious that a quadratic
convergence rate is achieved when starting sufficiently close to an optimal solution.
The above calculation of a search direction is known as the Gauss-Newton method
and represents the traditional way to solve nonlinear least squares problems, see
Björck [2] for more details. In general, the Gauss-Newton method possesses the
attractive feature that it converges quadratically although we only provide first
order information.

However, the assumptions of the convergence theorem of Gauss-Newton methods
are very strong and cannot be satisfied in real situations. We have to expect difficul-
ties in case of non-zero residuals, rank-deficient Jacobian matrices, non-continuous
derivatives, and starting points far away from a solution. Further difficulties arise
when trying to solve large residual problems, where F (x�)TF (x�) is not sufficiently
small, for example relative to ‖∇F (x�)‖. Numerous proposals have been made in
the past to deal with this situation, and it is outside the scope of this section to give
a review of all possible attempts developed in the last 30 years. Only a few remarks
are presented to illustrate basic features of the main approaches, for further reviews
see Gill, Murray and Wright [10], Ramsin and Wedin [25], or Dennis [4].

A very popular method is known under the name Levenberg-Marquardt algo-
rithm, see Levenberg [16] and Marquardt [21]. The key idea is to replace the Hessian
in (6) by a multiple of the identity matrix, say λkI, with a suitable positive factor
λk. We get a uniquely solvable system of linear equations of the form

∇F (xk)∇F (xk)
Td+ λkd+∇F (xk)F (xk) = 0 .

For the choice of λk and the relationship to so-called trust region methods, see
Moré [22].

A more sophisticated idea is to replace B(xk) in (6) by a quasi-Newton-matrix Bk,
see Dennis [3]. But some additional safeguards are necessary to deal with indefinite
matrices ∇F (xk)∇F (xk)

T + Bk in order to get a descent direction. A modified
algorithm is proposed by Gill and Murray [9], where Bk is either a second-order
approximation of B(xk), or a quasi-Newton matrix. In this case, a diagonal matrix
is added to∇F (xk)∇F (xk)

T+Bk to obtain a positive definite matrix. Lindström [17]
proposes a combination of a Gauss-Newton and a Newton method by using a certain
subspace minimization technique.

4

If, however, the residuals are too large, there is no possibility to exploit the
special structure and a general unconstrained minimization algorithm, for example
a quasi-Newton method, can be applied as well.

3 The SQP-Gauss-Newton Method

Many efficient special purpose computer programs are available to solve uncon-
strained nonlinear least squares problems. On the other hand, there exists a very
simple approach to combine the valuable properties of Gauss-Newton methods with
that of SQP algorithms in a straightforward way with almost no additional efforts.
We proceed from an unconstrained least squares problem in the form

min 1
2

∑l
i=1 fi(x)

2

x ∈ IRn ,
(8)

see also (2). Since most nonlinear least squares problems are ill-conditioned, it is
not recommended to solve (8) directly by a general nonlinear programming method.
But we will see in this section that a simple transformation of the original problem
and its subsequent solution by an SQP method retains typical features of a spe-
cial purpose code and prevents the need to take care of negative eigenvalues of an
approximated Hessian matrix as in the case of alternative approaches. The corre-
sponding computer program can be implemented in a few lines provided that a SQP
algorithm is available.

The transformation, also described in Schittkowski [29, 30, 33], consists of in-
troducing l additional variables z = (z1, . . . , zl)

T and l additional nonlinear equality
constraints of the form

fi(x)− zi = 0 , i = 1, . . . , l . (9)

Then the equivalent transformed problem is

(x, z) ∈ IRn+l :
min 1

2
zT z

F (x)− z = 0 ,
(10)

F (x) = (f1(x), . . ., fl(x))
T . We consider now (10) as a general nonlinear program-

ming problem of the form

x̄ ∈ IRn̄ :
min f̄(x̄)

ḡ(x̄) = 0
(11)

with n̄ = n + l, x̄ = (x, z), f̄(x, z) = 1
2
zT z, ḡ(x, z) = F (x) − z, and apply an SQP

algorithm, see Spellucci [36], Stoer [37], or Schittkowski [27, 30]. The quadratic
programming subproblem is of the form

d̄ ∈ IRn̄ :
min 1

2
d̄T B̄kd̄+∇f̄(x̄k)

T d̄

∇ḡ(x̄k)
T d̄+ ḡ(x̄k) = 0 .

(12)

5

Here, x̄k = (xk, zk) is a given iterate and

B̄k =

(
Bk : Ck

CT
k : Dk

)
(13)

with Bk ∈ IRn×n, Ck ∈ IRn×l, and Dk ∈ IRl×l, a given approximation of the Hessian
of the Lagrangian function L(x̄, u) defined by

L(x̄, u) = f̄(x̄)− uT ḡ(x̄)

= 1
2
zT z − uT (F (x)− z) .

Since

∇x̄L(x̄, u) =

(−∇F (x)u
z + u

)

and

∇2
x̄L(x̄, u) =

(
B(x, u) : 0

0 : I

)

with

B(x, u) = −
l∑

i=1

ui∇2fi(x) , (14)

it seems to be reasonable to proceed now from a quasi-Newton matrix given by

B̄k =

(
Bk : 0
0 : I

)
, (15)

where Bk ∈ IRn×n is a suitable positive definite approximation of B(xk, uk). Inser-
tion of this B̄k into (12) leads to the equivalent quadratic programming subproblem

(d, e) ∈ IRn+l :
min 1

2
dTBkd+

1
2
eT e + zTk e

∇F (xk)
Td− e+ F (xk)− zk = 0 ,

(16)

where we replaced d̄ by (d, e). Some simple calculations show that the solution of
the above quadratic programming problem is identified by the linear system

∇F (xk)∇F (xk)
Td+Bkd+∇F (xk)F (xk) = 0 . (17)

This equation is identical to (6), if Bk = B(xk), and we obtain a Newton direction
for solving the unconstrained least squares problem (8).

Note that B(x) defined by (5) and B(x) defined by (14) coincide at an optimal
solution of the least squares problem, since F (xk) = −uk. Based on the above
considerations, an SQP method can be applied to solve (10) directly. The quasi-
Newton-matrices B̄k are always positive definite, and consequently also the matrix
Bk defined by (13). Therefore, we omit numerical difficulties imposed by negative
eigenvalues as found in the usual approaches for solving least squares problems.

6

When starting the SQP method, one could proceed from a user-provided initial
guess x0 for the variables and define

z0 = F (x0) ,

B0 =

(
μI : 0
0 : I

)
,

(18)

guaranteeing a feasible starting point x̄0. The choice of B0 is of the form (15) and
allows a user to provide some information on the estimated size of the residuals,
if available. If it is known that the final norm F (x�)TF (x�) is close to zero at
the optimal solution x�, the user could choose a small μ in (18). At least in the
first iterates, the search directions are more similar to a Gauss-Newton direction.
Otherwise, a user could define μ = 1, if a large residual is expected.

Under the assumption that B̄k is decomposed in the form (15) and that B̄k

be updated by the BFGS formula, then B̄k+1 is decomposed in the form (15), see
Schittkowski [29]. The decomposition (15) is rarely satisfied in practice, but seems
to be reasonable, since the intention is to find a x� ∈ IRn with

∇F (x�)F (x�) = 0 ,

and ∇F (xk)
Tdk + F (xk) is a Taylor approximation of F (xk+1). Note also that the

usual way to derive Newton’s method is to assume that the optimality condition is
satisfied for a certain linearization of a given iterate xk, and to use this linearized
system for obtaining a new iterate.

Example 3.1 We consider the banana function

f(x1, x2) = 100(x2 − x1
2)2 + (1− x1)

2 .

When applying the nonlinear programming code NLPQLP of Schittkowski [27, 34],
an implementation of a general purpose SQP method, we get the iterates of Table 1
when starting at x0 = (−1.2, 1.0)T . The objective function is scaled by 0.5 to adjust
this factor in the least squares formulation (1). The last column contains an internal
stopping condition based on the optimality criterion, in our unconstrained case equal
to

|∇f(xk)B
−1
k ∇f(xk)|

with a quasi-Newton matrix Bk. We observe a very fast final convergence speed, but
a relatively large number of iterations.
The transformation discussed above, leads to the equivalent constrained nonlinear
programming problem

x1, x2, z1, z2 :

min z1
2 + z2

2

10(x2 − x1
2)− z1 = 0 ,

1− x1 − z2 = 0 .

NLPQLP computes the results of Table 2, where the second column shows in addition
the maximal constraint violation.

7

k f(xk) s(xk)
0 24.20 0.54 · 105
1 12.21 0.63 · 102
2 7.98 0.74 · 102

. . .
35 0.29 · 10−3 0.47 · 10−3

36 0.19 · 10−4 0.39 · 10−4

37 0.12 · 10−5 0.25 · 10−5

38 0.12 · 10−7 0.24 · 10−7

39 0.58 · 10−12 0.11 · 10−11

40 0.21 · 10−15 0.42 · 10−15

Table 1: NLP Formulation of Banana Function

k f(xk) r(xk) s(xk)
0 12.10 0.0 0.24 · 102
1 0.96 · 10−10 0.48 · 102 0.23 · 10−4

2 0.81 · 10−10 0.40 · 10−10 0.16 · 10−9

3 0.88 · 10−21 0.14 · 10−8 0.18 · 10−20

Table 2: Least Squares Formulation of Banana Function

4 Constrained Least Squares Problems

Now we consider constrained nonlinear least squares problems

x ∈ IRn :

min 1
2

∑l
i=1 fi(x)

2

gj(x) = 0 , j = 1, . . . , me ,

gj(x) ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu .

(19)

A combination of the SQP method with the Gauss-Newton method is proposed by
Mahdavi-Amiri [19]. Lindström [18] developed a similar method based on an active
set idea leading to a sequence of equality constrained linear least squares problems.
A least squares code for linearly constrained problems was published by Hanson and
Krogh [12] that is based on a tensor model.

On the other hand, a couple of SQP codes are available for solving general smooth
nonlinear programming problems, for example VFO2AD (Powell [23]), NLPQLP
(Schittkowski [27, 34]), NPSOL (Gill, Murray, Saunders, Wright [11]), or DONLP2
(Spellucci [36]). Since most nonlinear least squares problems are ill-conditioned,
it is not recommended to solve (19) directly by a general nonlinear programming
method as shown in the previous section. The same transformation used before can

8

be extended to solve also constrained problems. The subsequent solution by an SQP
method retains typical features of a special purpose code and is easily implemented.

As outlined in the previous section, we introduce l additional variables z =
(z1, . . . , zl)

T and l additional nonlinear equality constraints of the form

fi(x)− zi = 0 ,

i = 1, . . ., l. The following transformed problem is to be solved by an SQP method,

(x, z) ∈ IRn+l :

min 1
2
zT z

fi(x)− zi = 0 , i = 1, . . . , l ,

gj(x) = 0 , j = 1, . . . , me ,

gj(x) ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xn .

(20)

In this case, the quadratic programming subproblem has the form

(d, e) ∈ IRn+l :

min 1
2
(dT , eT)B̄k

(
d
e

)
+ zTk e

∇fi(xk)
Td− e + fi(xk)− zki = 0 , i = 1, . . . , l ,

∇gj(xk)
Td+ gj(xk) = 0 , j = 1, . . . , me ,

∇gj(xk)
Td+ gj(xk) ≥ 0 , j = me + 1, . . . , m ,

xl − xk ≤ d ≤ xu − xk .

(21)

It is possible to simplify the problem by substituting

e = ∇F (xk)
Td+ F (xk)− zk ,

so that the quadratic programming subproblem depends on only n variables and
m linear constraints. This is an important observation from the numerical point of
view, since the computational effort to solve (21) reduces from the order of (n+ l)3

to n3, and the remaining computations in the outer SQP frame are on the order of
(n + l)2. Therefore, the computational work involved in the proposed least squares
algorithm is comparable to the numerical efforts required by special purpose meth-
ods, at least if the number l of observations is not too large.

When implementing the above proposal, one has to be aware that the quadratic
programming subproblem is sometimes expanded by an additional variable δ, so
that some safeguards are required. Except for this limitation, the proposed trans-
formation (20) is independent from the variant of the SQP method used, so that
available codes can be used in the form of a black box.

9

In principle, one could use the starting points proposed by (18). Numerical
experience suggests, however, starting from z0 = F (x0) only if the constraints are
satisfied at x0,

gj(x0) = 0 , j = 1, . . . , me ,

gj(x0) ≥ 0 , j = me + 1, . . . , m .

In all other cases, it is proposed to proceed from z0 = 0.
A final remark concerns the theoretical convergence of the algorithm. Since

the original problem is transformed into a general nonlinear programming problem,
we can apply all convergence results known for SQP methods. If an augmented La-
grangian function is preferred for the merit function, a global convergence theorem is
found in Schittkowski [26]. The theorem states that when starting from an arbitrary
initial value, a Karush-Kuhn-Tucker point is approximated, i.e., a point satisfying
the necessary optimality conditions. If, on the other hand, an iterate is sufficiently
close to an optimal solution and if the steplength is 1, then the convergence speed
of the algorithm is superlinear, see Powell [24] for example. This remark explains
the fast final convergence rate one observes in practice.

The assumptions are standard and are required by any special purpose algorithm
in one or another form. But in our case, we do not need any regularity conditions
for the function f1, . . ., fl, i.e., an assumption that the matrix ∇F (xk) is of full
rank, to adapt the mentioned convergence results to the least squares case. The
reason is found in the special form of the quadratic programming subproblem (21),
since the first l constraints are linearly independent and are also independent of the
remaining restrictions.

10

5 Performance Evaluation

Since the proposed transformation does not depend on constraints, we consider now
the unconstrained least squares problem

x ∈ IRn :
min 1

2

∑l
i=1 fi(x)

2

xl ≤ x ≤ xu .
(22)

We assume that all functions fi(x), i = 1, . . ., l, are continuously differentiable.
Efficient and reliable least squares algorithms were implemented mainly in the 1960s
and 1970s, see for example Fraley [8] for a review. An early comparative study of
13 codes was published by Bard [1]. In most cases, mathematical algorithms are
based on the Gauss-Newton method, see Section 2. When developing and testing
new implementations, the authors used standard test problems, which have been
collected from literature and which do not possess a data fitting structure in most
cases, see Dennis et al. [5], Hock and Schittkowski [14], or Schittkowski [28].

Our intention is to present a comparative study of some least squares codes, when
applied to a set of data fitting problems. Test examples are given in form of analytical
functions to avoid additional side effects introduced by round-off or integration errors
as, e.g., in the case of dynamical systems. We proceed from a subset of the parameter
estimation problems listed in Schittkowski [30], a set of 143 least squares functions.
More details, in particular the corresponding model functions, data, and results,
are found in the database of the software system EASY-FIT [30, 31], which can be
downloaded from the home page of the author1. Derivatives are evaluated by the
automatic differentiation tool PCOMP, see Dobmann et al. [6]. The following least
squares routines are executed to solve the test problems mentioned before:

NLPLSQ: By transforming the original problem into a general nonlinear program-
ming problem in a special way, typical features of a Gauss-Newton and quasi-Newton
least squares method are retained, as outlined in the previous sections. The result-
ing optimization problem is solved by a standard sequential quadratic programming
code called NLPQLP, see Schittkowski [27, 34].

NLSNIP: The code is a special purpose implementation for solving constrained
nonlinear least squares problems by a combination of Gauss-Newton, Newton, and
quasi-Newton techniques, see Lindström [17, 18].

DN2GB: The subroutine is a frequently used unconstrained least squares algo-
rithm developed by Dennis et al. [5]. The mathematical method is also based on a
combined Gauss-Newton and quasi-Newton approach.

All algorithms are capable of taking upper and lower bounds of the variables
into account, but only NLPLSQ and NLSNIP are able to solve also constrained
problems.

1http://www.klaus-schittkowski.de/

11

code succ nf ng

NLPLSQ 94.4 % 30.2 19.6
NLSNIP 87.4 % 26.5 17.0
DN2GB 93.0 % 27.1 19.2

Table 3: Performance Results for Explicit Test Problems

The optimization routines are executed with the same set of input parameters,
although we know that in one or another case, these tolerances can be adapted to
a special situation leading to better individual results. Termination tolerance for
NLPLSQ is 10−10. DN2GB is executed with tolerances 10−9 and 10−7 for the relative
function and variable convergence. NLSNIP uses a tolerance of 10−10 for the relative
termination criteria and 10−8 for the absolute stopping condition. The total number
of iterations is bounded by 1,000 for all three algorithms.

In some situations, an algorithm is unable to stop at the same optimal solution
obtained by the other ones. There are many possible reasons, for example termina-
tion at a local solution, internal instabilities, or round-off errors. Thus, we need a
decision when an optimization run is considered to be a successful one or not. We
claim that successful termination is obtained if the total residual norm differs at
most by 1 % from the best value obtained by all three algorithms, or, in case of a
problem with zero residuals, is less than 10−7. The percentage of successful runs is
listed in Table 3, where the corresponding column is denoted by succ.

Comparative performance data are evaluated only for those test problems which
are successfully solved by all three algorithms, altogether 95 problems. The corre-
sponding mean values for number of function and gradient evaluations are denoted
by nf and ng and are also shown in Table 3.

Although the number of test examples is too low to obtain statistically relevant
results, we get the impression that the codes DN2GB and NLSNIP behave best with
respect to efficiency. NLPLSQ and DN2GB are somewhat more reliable than the
others subject to convergence towards a global solution. However, none of the codes
tested is able to solve all problems within the required accuracy.

12

6 Calling Sequence

In this section, we describe the arguments of subroutine NLPLSX in detail.

Usage:

CALL NLPLSQ (M, ME, LMMAX, L, N,
/ LNMAX, LMNN2, X, FUNC, RES,
/ GRAD, U, XL, XU, ACC,
/ ACCQP, RESSIZ, MAXFUN MAXIT, MAXNM,
/ RHO, IPRINT, IOUT, IFAIL, WA,
/ LWA, KWA, LKWA, LOGWA, LLOGWA)

Definition of the parameters:

M : Number of constraints, i.e., m.

ME : Number of equality constraints, i.e., me.

LMMAX : Row dimension of GRAD and dimension of FUNC. LM-
MAX must be at least one and not smaller than M + L.

L : Number of terms in objective function, i.e., l.

N : Number of variables, i.e., n.

LNMAX : Dimensioning parameter, at least two and greater than N
+ L.

LMNN2 : Dimensioning parameter, must be set to M + 2*N + 3*L
+ 2 when calling NLPLSQ.

X(LNMAX) : On input, the first N positions of X have to contain an
initial guess for the solution. On return, X is replaced by
the last computed iterate.

FUNC(LMMAX) : Function values passed to NLPLSQ by reverse communica-
tion, i.e., the first L positions contain the L residual values
fi(x), i = 1, . . ., l, the subsequent M coefficients the con-
straint values gj(x), j = 1, . . . ,m.

RES : On return, RES contains the sum of squared residuals
f1(x)

2+ . . . +fl(x)
2.

13

GRAD(LMMAX, The array is used to pass gradients of residuals and con-

LNMAX) : straints to NLPLSQ by reverse communication. In the
driving program, the row dimension of GRAD must be
equal to LMMAX. The first L rows contain L gradients of
residual functions ∇fi(x) at x, i = 1, . . ., l, the subsequent
M rows gradients of constraint functions ∇gj(x), j = 1,
. . . , m.

U(LMNN2) : On return, U contains the multipliers with respect to the
last computed iterate. The first M locations contain the
multipliers of the M nonlinear constraints, the subsequent
N locations the multipliers of the lower bounds, and the
following N locations the multipliers of the upper bounds.
At an optimal solution, all multipliers with respect to in-
equality constraints should be nonnegative.

XL(LNMAX), On input, the one-dimensional arrays XL and XU must

XU(LNMAX) : contain the upper and lower bounds of the variables.

ACC : The user has to specify the desired final accuracy (e.g.
1.0D-7). The termination accuracy should not be much
smaller than the accuracy by which gradients are com-
puted.

ACCQP : The tolerance is passed to the QP solver to perform several
tests, for example whether optimality conditions are satis-
fied or whether a number is considered as zero or not. If
ACCQP is less or equal to zero, then the machine precision
is computed by NLPQLP and subsequently multiplied by
10.0.

RESSIZ : The user must indicate a non-negative guess for the approx-
imate size of the least squares residual, i.e., a low positive
real number if the residual is supposed to be small, and a
large one in the order of 1 if the residual is supposed to be
large.

MAXFUN : The integer variable defines an upper bound for the number
of function calls during the line search (e.g. 20).

MAXIT : Maximum number of outer iterations, where one itera-
tion corresponds to one formulation and solution of the
quadratic programming subproblem, or, alternatively, one
evaluation of gradients (e.g. 100).

14

MAXNM : Stack size for storing merit function values at previous
iterations for non-monotone line search (e.g. 10). If
MAXNM=0, monotone line search is performed. MAXNM
should not be greater than 50.

RHO : Parameter for initializing a restart in case of IFAIL=2
by setting the BFGS-update matrix to RHO*I, where I
denotes the identity matrix. The number of restarts is
bounded by MAXFUN. No restart is performed if RHO is
set to zero. Must be non-negative (e.g. 100).

IPRINT : Specification of the desired output level:

0 - No output of the program.

1 - Only final convergence analysis.

2 - One line of intermediate results for each iteration.
3 - More detailed information for each iteration.
4 - More line search data displayed.

IOUT : Integer indicating the desired output unit number, i.e., all
write-statements start with ’WRITE(IOUT,... ’.

IFAIL : The parameter shows the reason for terminating a solution
process. Initially IFAIL must be set to zero. On return
IFAIL could contain the following values:

-2 - Compute new gradient values.

-1 - Compute new function values.

0 - Optimality conditions satisfied.

1 - Stop after MAXIT iterations.

2 - Uphill search direction.

3 - Underflow when computing new BFGS-update matrix.

4 - Line search exceeded MAXFUN iterations.
5 - Length of a working array too short.

6 - False dimensions, M+L>LMMAX, N+L≥LNMAX, or

LMNN2 �=M+N+N+3*L+2.

7 - Search direction close to zero at infeasible iterate.
8 - Starting point violates lower or upper bound.

9 - Wrong input parameter, e.g., MODE, IPRINT, IOUT.

10 - Inconsistency in QP, division by zero.

>100 - Error message of QP solver.

15

WA(LWA) : WA is a real working array of length LWA.

LWA : Length of the real working array WA. LWA must be at
least
LNMAX*LNMAX + 27*LNMAX + 8*LMMAX + 150

+ MAX0(5*LNMAX*LNMAX/2 + 17*LNMAX

+ M*LNMAX + 3*M + 20,(N+1)*L)

KWA(LKWA) : KWA is an integer working array of length LKWA.

LKWA : Length of the integer working array KWA. LKWA must be
at least LNMAX + 40.

LOGWA(LLOGWA) : Logical working array of length LLOGWA.

LLOGWA : Length of the logical array LOGWA. The length LLOGWA
of the logical array must be at least 2*LMMAX+10.

If M > 0 and the starting point is feasible or if RESIZ<SQRT(ACC), starting
values for auxiliary variables are set internally to initial residual values found in
FUNC.

NLPLSQ must be linked with the calling routine of the user, the SQP code
NLPQLP, and the quadratic programming code QL.

7 Program Organization

NLPLSQ is implemented in form of a Fortran subroutine, where all declarations of
real numbers must be done in double precision. Model functions and gradients are
passed by reverse communication. The user has to provide functions and gradients
in the same program which executes NLPLSQ, according to the following rules:

1. Choose starting values for the variables to be optimized, and store them in
the first N positions of X.

2. Compute residual and constraint function values values, and store them in
FUNC. The first L positions contain the L residual values fi(x), i = 1, . . ., l,
the subsequent M coefficients the constraint values gj(x), j = 1, . . ., m.

3. Compute gradients of residual and constraint functions, and store them in
a two-dimensional array GRAD. The first L rows contain gradients of resid-
ual functions ∇fi(x) at x, i = 1, . . ., l, the subsequent M rows gradients of
constraint functions ∇gj(x), j = 1, . . ., m.

4. Set IFAIL=0 and execute NLPQLP.

5. If NLPLSQ returns with IFAIL=-1, compute residual function values and con-
straint values for the arguments found in X, and store them in FUNC in the
order shown above. Then call NLPLSQ again, but do not change IFAIL.

16

6. If NLPLSQ terminates with IFAIL=-2, compute gradient values subject to
variables stored in X, and store them in GRAD as indicated above. Then call
NLPLSQ again without changing IFAIL.

7. If NLPQLP terminates with IFAIL=0, the internal stopping criteria are sat-
isfied. The variable values found in X are considered as a local solution of the
least squares problem.

8. In case of IFAIL>0, an error occurred.

If analytical derivatives are not available, additional function calls are required
for gradient approximations, for example by forward differences, two-sided differ-
ences, or even higher order formulae.

Some of the termination reasons depend on the accuracy used for approximat-
ing gradients. If we assume that all functions and gradients are computed within
machine precision and that the implementation is correct, there remain only the
following possibilities that could cause an error message:

1. The termination parameter ACC is too small, so that the numerical algorithm
plays around with round-off errors without being able to improve the solution.
Especially the Hessian approximation of the Lagrangian function becomes un-
stable in this case. A straightforward remedy is to restart the optimization
cycle again with a larger stopping tolerance.

2. The constraints are contradicting, i.e., the set of feasible solutions is empty.
There is no way to find out, whether a general nonlinear and non-convex set
possesses a feasible point or not. Thus, the nonlinear programming algorithms
will proceed until running in any of the mentioned error situations. In this
case, there the correctness of the model must be checked very carefully.

3. Constraints are feasible, but some of them there are degenerate, for example
if some of the constraints are redundant. One should know that SQP algo-
rithms require satisfaction of the so-called constraint qualification, i.e., that
gradients of active constraints are linearly independent at each iterate and in
a neighborhood of the optimal solution. In this situation, it is recommended
to check the formulation of the model.

However, some of the error situations do also occur, if because of wrong or non-
accurate gradients, the quadratic programming subproblem does not yield a descent
direction for the underlying merit function. In this case, one should try to improve
the accuracy of function evaluations, scale the model functions in a proper way, or
start the algorithm from other initial values.

17

8 Examples

To give a simple example how to organize the code in case of two explicitly given
functions, we consider again Rosenbrock’s banana function, see Example 3.1 or test
problem TP1 of Hock and Schittkowski [14],

x1, x2 ∈ IR : min 100(x2 − x2
1)

2 + (1− x1)
2 (23)

The Fortran source code for executing NLPLSQ is listed below. Gradients are
computed analytically.

IMPLICIT NONE

INTEGER L, N, LNMAX, M, LMMAX, LMNN2, LWA, LKWA, LLOGWA

PARAMETER (L = 2, N = 2, M = 0, LNMAX = N+L+1, LMMAX = L)

PARAMETER (LWA = LNMAX*LNMAX + 27*LNMAX + 8*LMMAX + 150

/ + MAX0(5*LNMAX*LNMAX/2 + 17*LNMAX

/ + M*LNMAX + 3*M + 20,(N+1)*L),

/ LMNN2 = M + 2*N + 3*L + 2,

/ LKWA = LNMAX + 40,

/ LLOGWA = 2*(L+M) + 10)

INTEGER ME, MAXFUN, MAXIT, IPRINT, MAXNM, IOUT, IFAIL,

/ KWA

DOUBLE PRECISION X, FUNC, RES, GRAD, U, XL, XU, ACC, ACCQP,

/ RESSIZ, RHO, WA

DIMENSION X(LNMAX), FUNC(LMMAX), GRAD(LMMAX,LNMAX),

/ U(LMNN2), XL(LNMAX), XU(LNMAX),

/ WA(LWA), KWA(LKWA), LOGWA(LLOGWA)

LOGICAL LOGWA

C

C set parameters

C

ME = 0

ACC = 1.0D-18

ACCQP = ACC

RESSIZ = ACC

RHO = 1.0D2

MAXFUN = 20

MAXIT = 100

MAXNM = 0

IPRINT = 2

IOUT = 6

IFAIL = 0

C

C starting values and bounds

C

X(1) = -1.2D0

18

XL(1) = -1.0D5

XU(1) = 1.0D5

X(2) = 1.0D0

XL(2) = -1.0D5

XU(2) = 1.0D5

C

C execute NLPLSQ in reverse communication

C

1 CONTINUE

IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-1)) THEN

FUNC(1) = 10.0D0*(X(2) - X(1)**2)

FUNC(2) = 1.0D0 - X(1)

ENDIF

IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-2)) THEN

GRAD(1,1) = -20.0D0*X(1)

GRAD(1,2) = 10.0D0

GRAD(2,1) = -1.0D0

GRAD(2,2) = 0.0D0

ENDIF

C

C call NLPLSQ

C

CALL NLPLSQ (M, ME, LMMAX, L, N,

/ LNMAX, LMNN2, X, FUNC, RES,

/ GRAD, U, XL, XU, ACC,

/ ACCQP, RESSIZ, MAXFUN, MAXIT, MAXNM,

/ RHO, IPRINT, IOUT, IFAIL, WA,

/ LWA, KWA, LKWA, LOGWA, LLOGWA)

IF (IFAIL.LT.0) GOTO 1

C

C end of program

C

STOP

END

The following output should appear on screen:

--

START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

--

Parameters:

N = 4

M = 2

ME = 2

MODE = 1

19

ACC = 0.1000D-17

ACCQP = 0.1000D-13

STPMIN = 0.1000D-14

RHO = 0.0000D+00

MAXFUN = 20

MAXNM = 0

MAXIT = 100

IPRINT = 2

Output in the following order:

IT - iteration number

F - objective function value

SCV - sum of constraint violations

NA - number of active constraints

I - number of line search iterations

ALPHA - steplength parameter

DELTA - additional variable to prevent inconsistency

KKT - Karush-Kuhn-Tucker optimality criterion

IT F SCV NA I ALPHA DELTA KKT

--

1 0.12100000D+02 0.00D+00 2 0 0.00D+00 0.00D+00 0.24D+02

2 0.54314750D-25 0.48D+02 2 1 0.10D+01 0.00D+00 0.47D-12

3 0.18785906D-25 0.97D-14 2 1 0.10D+01 0.00D+00 0.38D-25

Objective function value: F(X) = 0.18785906D-25

Solution values: X =

0.10000000D+01 0.10000000D+01 -0.96837752D-14 0.19359245D-12

Distances from lower bounds: X-XL =

0.10000100D+06 0.10000100D+06 0.10000000D+31 0.10000000D+31

Distances from upper bounds: XU-X =

0.99999000D+05 0.99999000D+05 0.10000000D+31 0.10000000D+31

Multipliers for lower bounds: U =

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

Multipliers for upper bounds: U =

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

Constraint values: G(X) =

0.96837752D-14 0.30445895D-16

Multipliers for constraints: U =

0.77448571D-27 -0.11116847D-25

Number of function calls: NFUNC = 3

Number of gradient calls: NGRAD = 3

Number of calls of QP solver: NQL = 3

--- Final Convergence Analysis of NLPLSQ ---

20

Sum of squared functions: RES(X) = 0.37489826D-25

Function values: F(X) =

0.00000000D+00 0.19362290D-12

Solution: X =

0.10000000D+01 0.10000000D+01

Multiplier values: U =

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

Constraint values: G(X) =

Number of function calls: NFUNC = 3

Number of derivative calls: NGRAD = 3

To present a data fitting example, we consider a model function

h(x, t) =
x1(t

2 + x2t)

t2 + x3t + x4

,

x = (x1, . . . , x4)
T . The data are shown in the code below. In addition, we have two

equality constraints

h(x, t1)− y1 = 0 , h(x, t11)− y11 = 0 .

The code and the corresponding screen output follow.

IMPLICIT NONE

INTEGER L, N, LNMAX, M, LMMAX, LMNN2, LWA, LKWA, LLOGWA

PARAMETER (L = 11, N = 4, M = 2, LNMAX = N+L+1,

/ LMMAX = M+L)

PARAMETER (LWA = LNMAX*LNMAX + 25*LNMAX + 7*LMMAX + 150

/ + MAX0(5*LNMAX*LNMAX/2 + 17*LNMAX

/ + M*LNMAX + 3*M + 20,(N+1)*L),

/ LMNN2 = M + 2*N + 3*L + 2,

/ LKWA = LNMAX + 40,

/ LLOGWA = 2*(L+M) + 10)

INTEGER ME, MAXFUN, MAXIT, IPRINT, MAXNM, IOUT, IFAIL,

/ KWA, I, J

DOUBLE PRECISION X, FUNC, RES, GRAD, U, XL, XU, ACC,

/ ACCQP, RESSIZ, RHO, WA, T, Y, W

DIMENSION X(LNMAX), FUNC(LMMAX), GRAD(LMMAX,LNMAX),

/ U(LMNN2), XL(LNMAX), XU(LNMAX),

/ WA(LWA), KWA(LKWA), LOGWA(LLOGWA),

/ T(L), Y(L), W(N)

LOGICAL LOGWA

DATA T/0.0625D0,0.0714D0,0.0823D0,0.1000D0,0.1250D0,

/ 0.1670D0,0.2500D0,0.5000D0,1.0000D0,2.0000D0,

/ 4.0000D0/

DATA Y/0.0246D0,0.0235D0,0.0323D0,0.0342D0,0.0456D0,

21

/ 0.0627D0,0.0844D0,0.1600D0,0.1735D0,0.1947D0,

/ 0.1957D0/

C

C set parameters

C

ME = 2

ACC = 1.0D-13

ACCQP = 1.0D-14

RESSIZ = 1.0D-4

RHO = 1.0D2

MAXFUN = 20

MAXIT = 100

MAXNM = 10

IPRINT = 2

IOUT = 6

IFAIL = 0

C

C starting values and bounds

C

X(1) = 0.25D0

X(2) = 0.39D0

X(3) = 0.415D0

X(4) = 0.39D0

DO I = 1,N

XL(I) = 0.0D0

XU(I) = 1.0D5

ENDDO

C

C execute NLPLSQ in reverse communication

C

1 CONTINUE

IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-1)) THEN

DO J = 1,L

CALL H(T(J), Y(J), N, X, FUNC(J))

ENDDO

CALL H(T(1), Y(1), N, X, FUNC(L+1))

CALL H(T(L), Y(L), N, X, FUNC(L+2))

ENDIF

IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-2)) THEN

DO J = 1,L

CALL DH(T(J), N ,X, W)

DO I=1,N

GRAD(J,I) = W(I)

ENDDO

ENDDO

CALL DH(T(1), N, X, W)

22

DO I=1,N

GRAD(L+1,I) = W(I)

ENDDO

CALL DH(T(L), N, X, W)

DO I=1,N

GRAD(L+2,I) = W(I)

ENDDO

ENDIF

C

C call NLPLSQ

C

CALL NLPLSQ (M, ME, L+M, L, N,

/ L+N+1, LMNN2, X, FUNC, RES,

/ GRAD, U, XL, XU, ACC,

/ ACCQP, RESSIZ, MAXFUN, MAXIT, MAXNM,

/ RHO, IPRINT, IOUT, IFAIL, WA,

/ LWA, KWA, LKWA, LOGWA, LLOGWA)

IF (IFAIL.LT.0) GOTO 1

C

C end of main program

C

STOP

END

C

C data fitting function

C

SUBROUTINE H(T, Y, N ,X, F)

IMPLICIT NONE

INTEGER N

DOUBLE PRECISION T, Y, X(N), F

C

F = X(1)*T*(T + X(2))/(T**2 + X(3)*T + X(4)) - Y

C

RETURN

END

C

C partial derivatives

C

SUBROUTINE DH(T, N ,X, DF)

IMPLICIT NONE

INTEGER N

DOUBLE PRECISION T, X(N), DF(N)

C

DF(1) = T*(T + X(2))/(T**2 + X(3)*T + X(4))

DF(2) = X(1)*T/(T**2 + X(3)*T + X(4))

DF(3) = -X(1)*T**2*(T + X(2))/(T**2 + X(3)*T + X(4))**2

23

DF(4) = -X(1)*T*(T + X(2))/(T**2 + X(3)*T + X(4))**2

C

RETURN

END

--

Start of the Sequential Quadratic Programming Algorithm

NLPQLP, Version 4.04 (Apr 2013)

--

Parameters:

N = 15

M = 13

ME = 13

MODE = 1

ACC = 0.1000D-12

ACCQP = 0.1000D-13

STPMIN = 0.1000D-14

RHO = 0.1000D+03

MAXFUN = 20

MAXNM = 10

MAXIT = 100

IPRINT = 2

Output in the following order:

IT - iteration number

F - objective function value

SCV - sum of constraint violations

NA - number of active constraints

I - number of line search iterations

ALPHA - steplength parameter

DELTA - additional variable to prevent inconsistency

KKT - Karush-Kuhn-Tucker optimality criterion

IT F SCV NA I ALPHA DELTA KKT

--

1 0.00000000D+00 0.25D+00 13 0 0.00D+00 0.00D+00 0.11D-02

2 0.42502103D-04 0.11D+00 13 2 0.47D+00 0.00D+00 0.51D-03

3 0.20847571D-03 0.10D-01 13 1 0.10D+01 0.00D+00 0.51D-04

4 0.20644006D-03 0.18D-03 13 1 0.10D+01 0.00D+00 0.11D-05

5 0.20647850D-03 0.13D-04 13 1 0.10D+01 0.00D+00 0.95D-07

6 0.20648135D-03 0.23D-05 13 1 0.10D+01 0.00D+00 0.19D-07

7 0.20648571D-03 0.71D-11 13 1 0.10D+01 0.00D+00 0.49D-13

Objective function value: F(X) = 0.20648571D-03

Solution values: X =

24

0.19226325D+00 0.40401714D+00 0.27497963D+00 0.20678888D+00

-0.19718224D-22 0.46890274D-02 0.27982019D-03 0.54681102D-02

0.39112775D-02 0.26393845D-02 0.85962230D-02 -0.13764508D-01

0.86748133D-02 -0.36381032D-03 0.26469780D-22

Distances from lower bounds: X-XL =

0.19226325D+00 0.40401714D+00 0.27497963D+00 0.20678888D+00

0.10000000D+31 0.10000000D+31 0.10000000D+31 0.10000000D+31

0.10000000D+31 0.10000000D+31 0.10000000D+31 0.10000000D+31

0.10000000D+31 0.10000000D+31 0.10000000D+31

Distances from upper bounds: XU-X =

0.99999808D+05 0.99999596D+05 0.99999725D+05 0.99999793D+05

0.10000000D+31 0.10000000D+31 0.10000000D+31 0.10000000D+31

0.10000000D+31 0.10000000D+31 0.10000000D+31 0.10000000D+31

0.10000000D+31 0.10000000D+31 0.10000000D+31

Multipliers for lower bounds: U =

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00

Multipliers for upper bounds: U =

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00

Constraint values: G(X) =

-0.49789686D-12 -0.55888801D-12 -0.62875356D-12 -0.73018067D-12

-0.84732828D-12 -0.97836192D-12 -0.10497679D-11 -0.75764048D-12

-0.34565580D-12 -0.11539576D-12 -0.26173508D-13 -0.49789686D-12

-0.26173508D-13

Multipliers for constraints: U =

0.10302965D-24 -0.46890274D-02 -0.27982020D-03 -0.54681102D-02

-0.39112775D-02 -0.26393845D-02 -0.85962230D-02 0.13764508D-01

-0.86748129D-02 0.36381057D-03 -0.56723318D-25 0.26628371D-01

0.18673631D-02

Number of function calls: NFUNC = 8

Number of gradient calls: NGRAD = 7

Number of calls of QP solver: NQL = 7

--- Final Convergence Analysis of NLPLSQ ---

Sum of squared functions: RES(X) = 0.41297141D-03

Function values: F(X) =

-0.49789686D-12 0.46890274D-02 0.27982019D-03 0.54681102D-02

0.39112774D-02 0.26393845D-02 0.85962230D-02 -0.13764508D-01

0.86748133D-02 -0.36381032D-03 -0.26173508D-13

25

Solution: X =

0.19226325D+00 0.40401714D+00 0.27497963D+00 0.20678888D+00

Multiplier values: U =

0.26628371D-01 0.18673631D-02 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00

Constraint values: G(X) =

-0.49789686D-12 -0.26173508D-13

Number of function calls: NFUNC = 8

Number of derivative calls: NGRAD = 7

9 Summary

We presented a modification of a Gauss-Newton method with the goal to apply an
available black-box SQP solver and to retain the excellent convergence properties
of Gauss-Newton-type algorithms. The idea is to introduce additional variables
and nonlinear equality constraints and to solve the transformed problem by an
SQP method. The method is outlined, some comparative performance results are
obtained, and the usage of the code is documented.

References

[1] Bard Y. (1970): Comparison of gradient methods for the solution of nonlinear
parameter estimation problems, SIAM Journal on Numerical Analysis, Vol. 7,
157-186

[2] Björck A. (1990): Least Squares Methods, Elsevier, Amsterdam

[3] Dennis J.E. (1973): Some computational techniques for the nonlinear least
squares problem, in: Numerical Solution of Systems of Nonlinear Algebraic
Equations , G.D. Byrne, C.A. Hall eds., Academic Press, London, New York

[4] Dennis J.E. (1977): Nonlinear least squares, in: The State of the Art in Nu-
merical Analysis , D. Jacobs ed., Academic Press, London, New York

[5] Dennis J.E.jr., Gay D.M., Welsch R.E. (1981): An adaptive nonlinear least-
squares algorithm, ACM Transactions on Mathematical Software, Vol. 7, No.
3, 348-368

[6] Dobmann M., Liepelt M., Schittkowski K. (1995): Algorithm 746: PCOMP:
A Fortran code for automatic differentiation, ACM Transactions on Mathe-
matical Software, Vol. 21, No. 3, 233-266

26

[7] Fernanda M., Costa P., Fernandes M.G.P. (2005): A primal-dual interior-
point algorithm for nonlinear least squares constrained problems, TOP, Vol.
13, 1863-8279

[8] Fraley C. (1988): Software performance on nonlinear least-squares problems,
Technical Report SOL 88-17, Dept. of Operations Research, Stanford Univer-
sity, Stanford, CA 94305-4022, USA

[9] Gill P.E., Murray W. (1978): Algorithms for the solution of the non-linear
least-squares problem, CIAM Journal on Numerical Analysis, Vol. 15, 977-992

[10] Gill P.E., Murray W., Wright M.H. (1981): Practical Optimization, Academic
Press, London, New York, Toronto, Sydney, San Francisco

[11] Gill P.E., Murray W., Saunders M., Wright M.H. (1983): User’s Guide for
SQL/NPSOL: A Fortran package for nonlinear programming, Report SOL
83-12, Dept. of Operations Research, Standford University, California

[12] Hanson R.J., Frogh F.T. (1992): A quadratic-tensor model algorithm for non-
linear least-squares problems with linear constraints, ACM Transactions on
Mathematical Software, Vol. 18, No. 2, 115-133

[13] Hiebert K. (1979): A comparison of nonlinear least squares software, Sandia
Technical Report SAND 79-0483, Sandia National Laboratories, Albuquerque,
New Mexico

[14] Hock W., Schittkowski K. (1981): Test Examples for Nonlinear Program-
ming Codes, Lecture Notes in Economics and Mathematical Systems, Vol.
187, Springer

[15] Holt J.N., Fletcher R. (1979): An algorithm for constrained non-linear least-
squares, IMA Journal on Applied Mathematics, Vol. 23, 449-463

[16] Levenberg K. (1944): A method for the solution of certain problems in least
squares, Quarterly of Applied Mathematics, Vol. 2, 164-168

[17] Lindström P. (1982): A stabilized Gauß-Newton algorithm for unconstrained
least squares problems, Report UMINF-102.82, Institute of Information Pro-
cessing, University of Umea, Umea, Sweden

[18] Lindström P. (1983): A general purpose algorithm for nonlinear least squares
problems with nonlinear constraints, Report UMINF-103.83, Institute of In-
formation Processing, University of Umea, Umea, Sweden

[19] Mahdavi-Amiri N. (1981): Generally constrained nonlinear least squares and
generating nonlinear programming test problems: Algorithmic approach, Dis-
sertation, The John Hopkins University, Baltimore, Maryland, USA

27

[20] Mahdavi-Amiri N., Bartels R.H. (1989): Constrained nonlinear least squares:
an exact penalty approach with projected structured quasi-Newton updates,
ACM Transactions on Mathematical Software (TOMS), Vol. 15, 220-242

[21] Marquardt D. (1963): An algorithm for least-squares estimation of nonlinear
parameters, SIAM Journal on Applied Mathematics, Vol. 11, 431-441

[22] Moré J.J. (1977): The Levenberg-Marquardt algorithm: implementation and
theory, in: Numerical Analysis, G. Watson ed., Lecture Notes in Mathematics,
Vol. 630, Springer, Berlin

[23] Powell M.J.D. (1978): A fast algorithm for nonlinearly constraint optimiza-
tion calculations, in: Numerical Analysis, G.A. Watson ed., Lecture Notes in
Mathematics, Vol. 630, Springer, Berlin

[24] Powell M.J.D. (1978): The convergence of variable metric methods for non-
linearly constrained optimization calculations, in: Nonlinear Programming 3,
O.L. Mangasarian, R.R. Meyer, S.M. Robinson eds., Academic Press, New
York, London

[25] Ramsin H., Wedin P.A. (1977): A comparison of some algorithms for the non-
linear least squares problem, Nordisk Tidstr. Informationsbehandlung (BIT),
Vol. 17, 72-90

[26] Schittkowski K. (1983): On the convergence of a sequential quadratic program-
ming method with an augmented Lagrangian search direction, Optimization,
Vol. 14, 197-216

[27] Schittkowski K. (1985/86): NLPQL: A Fortran subroutine solving constrained
nonlinear programming problems, Annals of Operations Research, Vol. 5, 485-
500

[28] Schittkowski K. (1987a): More Test Examples for Nonlinear Programming,
Lecture Notes in Economics and Mathematical Systems, Vol. 182, Springer

[29] Schittkowski K. (1988): Solving nonlinear least squares problems by a general
purpose SQP-method, in: Trends in Mathematical Optimization, K.-H. Hoff-
mann, J.-B. Hiriart-Urruty, C. Lemarechal, J. Zowe eds., International Series
of Numerical Mathematics, Vol. 84, Birkhäuser, 295-309

[30] Schittkowski K. (2002): Numerical Data Fitting in Dynamical Systems,
Kluwer Academic Publishers, Dordrecht

[31] Schittkowski K. (2002): EASY-FIT: A software system for data fitting in
dynamic systems, Structural and Multidisciplinary Optimization, Vol. 23, No.
2, 153-169

28

[32] Schittkowski K. (2003): QL: A Fortran code for convex quadratic programming
- User’s guide, Report, Department of Mathematics, University of Bayreuth

[33] Schittkowski K. (2005): DFNLP: A Fortran Implementation of an SQP-
Gauss-Newton Algorithm - User’s Guide, Version 2.0, Report, Department
of Computer Science, University of Bayreuth

[34] Schittkowski K. (2006): NLPQLP: A Fortran implementation of a sequen-
tial quadratic programming algorithm with distributed and non-monotone line
search - user’s guide, version 2.2, Report, Department of Computer Science,
University of Bayreuth

[35] Schittkowski K. (2007): NLPMMX: A Fortran implementation of a sequential
quadratic programming algorithm for solving constrained nonlinear min-max
problems - user’s guide, version 1.0, Report, Department of Computer Science,
University of Bayreuth

[36] Spellucci P. (1993): Numerische Verfahren der nichtlinearen Optimierung,
Birkhäuser

[37] Stoer J. (1985): Foundations of recursive quadratic programming methods for
solving nonlinear programs, in: Computational Mathematical Programming,
K. Schittkowski, ed., NATO ASI Series, Series F: Computer and Systems
Sciences, Vol. 15, Springer

29

	Introduction
	Least Squares Methods
	The SQP-Gauss-Newton Method
	Constrained Least Squares Problems
	Performance Evaluation
	Calling Sequence
	Program Organization
	Examples
	Summary

