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Abstract

The Fortran subroutine NLPLSX solves constrained least squares prob-
lems, where the sum of squared nonlinear functions is to be minimized. All
functions are to be continuously differentiable. By assuming now that the sum
is too long preventing the usage of special Gauss-Newton-type algorithms, the
problem directly solved by the sequential quadratic programming (SQP) code
NLPQLP. The usage of the code is documented, and an illustrative example
is presented.
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1 Introduction

Nonlinear least squares optimization is extremely important in many practical situa-
tions. Typical applications are maximum likelihood estimation, nonlinear regression,
data fitting, system identification, or parameter estimation, respectively. In these
cases, a mathematical model is available in form of one or several equations, and the
goal is to estimate some unknown parameters of the model. Exploited are available
experimental data, to minimize the distance of the model function, in most cases
evaluated at certain time values, from data measured at the same time values. An
extensive discussion of data fitting especially in case of dynamical systems is given
by Schittkowski [4].

The mathematical problem we want to solve, is given in the form

x ∈ IRn :

min 1
2

∑l
i=1 fi(x)2

gj(x) = 0 , j = 1, . . . , me ,

gj(x) ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu .

(1)

It is assumed that f1, . . ., fl and g1, . . ., gm are continuously differentiable.
In case of data fitting, we have a model function h(x, t) depending in addition

on a dynamic variable t, the time, and l pairs data of the form yi and ti, i = 1, . . .,
l, leading to

fi(x) = h(x, ti) − yi . (2)

In other words, we try to compute a set of model parameters x1, . . ., xn, so that
the distance of the model function at these parameters and the experimental time
values from the measured data is as small as possible. The distance is measured in
the Euclidean or L2-norm, respectively.

A large variety of numerical methods is available to solve nonlinear least squares
problems, most of them based on a Gauss-Newton approach. But we assume now
that so many data points or functions fi(x) are available, i.e., that l is so large, that
available algorithms are either not applicable or too slow.

The following sections contains a complete documentation of the Fortran code
and an example implementation.

2 Calling Sequence

In this section, we describe the arguments of subroutine NLPLSX in detail.
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Usage:

CALL NLPLSX ( M, ME, LMMAX, L, N,
/ LNMAX, MNN2, X, FUNC, RES,
/ GRAD, U, XL, XU, ACC,
/ ACCQP, RESSIZ, MAXFUN MAXIT, MAXNM,
/ RHOB, IPRINT, IOUT, IFAIL, WA,
/ LWA, KWA, LKWA, LOGWA, LLOGWA,
/ QPSLVE)

Definition of the parameters:

M : Number of constraints, i.e., m.

ME : Number of equality constraints, i.e., me.

LMMAX : Row dimension of GRAD and dimension of FUNC. LM-
MAX must be at least one and not smaller than L + M.

L : Number of terms in objective function, i.e., l.

N : Number of variables, i.e., n.

LNMAX : Dimensioning parameter, at least two and greater than N
+ L.

MNN2 : Dimensioning parameter, must be set to M + 2*N + 2
when calling NLPLSX.

X(NMAX) : On input, the first N positions of X have to contain an
initial guess for the solution. On return, X is replaced by
the last computed iterate.

FUNC(LMMAX) : Function values passed to NLPLSX by reverse communica-
tion, i.e., the first L positions contain the L residual values
fi(x), i = 1, . . ., l, the subsequent M coefficients the con-
straint values gj(x), j = 1, . . . ,m.

RES : On return, RES contains the sum of squared residuals
f1(x)2+ . . . +fl(x)2.

GRAD(LMMAX, The array is used to pass gradients of residuals and con-
straints

NMAX) : to NLPLSX by reverse communication. In the driving
program, the row dimension of GRAD must be equal to
LMMAX. The first L rows contain L gradients of residual
functions ∇fi(x) at x, i = 1, . . ., l, the subsequent M rows
gradients of constraint functions ∇gj(x), j = 1, . . . , m.
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U(LMNN2) : On return, U contains the multipliers with respect to the
last computed iterate. The first M locations contain the
multipliers of the M nonlinear constraints, the subsequent
N locations the multipliers of the lower bounds, and the
following N locations the multipliers of the upper bounds.
At an optimal solution, all multipliers with respect to in-
equality constraints should be nonnegative.

XL(NMAX), On input, the one-dimensional arrays XL and XU must

XU(NMAX) : contain the upper and lower bounds of the variables.

ACC : The user has to specify the desired final accuracy (e.g.
1.0D-7). The termination accuracy should not be much
smaller than the accuracy by which gradients are com-
puted.

ACCQP : The tolerance is passed to the QP solver to perform several
tests, for example whether optimality conditions are satis-
fied or whether a number is considered as zero or not. If
ACCQP is less or equal to zero, then the machine precision
is computed by NLPQLP and subsequently multiplied by
10.0.

RESSIZ : Dummy, any real variable for compatibility with NLPLSX.

MAXFUN : The integer variable defines an upper bound for the number
of function calls during the line search (e.g. 20).

MAXIT : Maximum number of outer iterations, where one itera-
tion corresponds to one formulation and solution of the
quadratic programming subproblem, or, alternatively, one
evaluation of gradients (e.g. 100).

MAXNM : Stack size for storing merit function values at previous it-
erations for non-monotone line search (e.g. 10).

RHOB : Parameter for initializing a restart in case of IFAIL=2 by
setting the BFGS-update matrix to rhob*I, where I denotes
the identity matrix. The number of restarts is bounded by
MAXFUN. No restart is performed if RHOB is set to zero.
Must be non-negative (e.g. 100).

IPRINT : Specification of the desired output level:

0 - No output of the program.
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1 - Only final convergence analysis.

2 - One line of intermediate results for each iteration.
3 - More detailed information for each iteration.
4 - More line search data displayed.

IOUT : Integer indicating the desired output unit number, i.e., all
write-statements start with ’WRITE(IOUT,... ’.

IFAIL : The parameter shows the reason for terminating a solution
process. Initially, IFAIL must be set to zero. On return
IFAIL could contain the following values:

-2 - Compute new gradient values.

-1 - Compute new function values.

0 - Optimality conditions satisfied.

1 - Stop after MAXIT iterations.

2 - Uphill search direction.

3 - Underflow when computing new BFGS-update matrix.

4 - Line search exceeded MAXFUN iterations.
5 - Length of a working array too short.

6 - False dimensions, M>MMAX, N≥NMAX, or

MNN2 �=M+N+N+2.

7 - Search direction close to zero at infeasible iterate.
8 - Starting point violates lower or upper bound.

9 - Wrong input parameter, e.g., MODE, IPRINT, IOUT.

10 - Inconsistency in QP, division by zero.

>100 - Error message of QP solver.

WA(LWA) : WA is a real working array of length LWA.

LWA : Length of the real working array WA. LWA must be at
least
5*N*N/2 + N*M + 41*N + 10*M + 165 .

KWA(LKWA) : KWA is an integer working array of length LKWA.

LKWA : Length of the integer working array KWA. LKWA must be
at least N + 30.

LOGWA(LLOGWA) : Logical working array of length LLOGWA.

LLOGWA : Length of the logical array LOGWA. The length LLOGWA
of the logical array must be at least 2*M + 10.

QPSLVE : External subroutine to solve the quadratic programming
subproblem. The calling sequence is
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CALL QPSLVE(M,ME,MMAX,N,NMAX,MNN,C,D,A,B,

/ XL,XU,X,U,EPS,MODE,IOUT,IFAIL,IPRINT,

/ WAR,LWAR,IWAR,LIWAR)

For more details about the choice and dimensions of argu-
ments, see [6].

3 Program Organization

All declarations of real numbers must be done in double precision. Subroutine
NLPLSX must be linked with the user-provided main program, the SQP code
NLPQLP, and the quadratic programming code QL [6].

NLPLSX is implemented in form of a Fortran subroutine. Model functions and
gradients are passed by reverse communication. The user has to provide functions
and gradients in the same program which executes NLPLSX, according to the fol-
lowing rules:

1. Choose starting values for the variables to be optimized, and store them in
the first n positions of a double precision array called X.

2. Compute residual and constraint function values values, and store them in a
double precision array FUNC. The first l positions contain the l residual values
fi(x), i = 1, . . ., l, the subsequent m coefficients the constraint values gj(x),
j = 1, . . ., m.

3. Compute gradients of residual and constraint functions, and store them in
a two-dimensional array GRAD. The first l rows contain gradients of resid-
ual functions ∇fi(x) at x, i = 1, . . ., l, the subsequent m rows gradients of
constraint functions ∇gj(x), j = 1, . . ., m.

4. Set IFAIL=0 and execute NLPLSX.

5. If NLPLSX returns with IFAIL=-1, compute residual function values and con-
straint values for the arguments found in X, and store them in FUNC in the
order shown above. Then call NLPLSX again, but do not change IFAIL.

6. If NLPLSX terminates with IFAIL=-2, compute gradient values subject to
variables stored in X, and store them in GRAD as indicated above. Then call
NLPLSX again without changing IFAIL.

7. If NLPLSX terminates with IFAIL=0, the internal stopping criteria are satis-
fied. The variable values found in X are considered as a local solution of the
least squares problem.

8. In case of IFAIL>0, an error occurred.
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If analytical derivatives are not available, additional function calls are required
for gradient approximations, for example by forward differences, two-sided differ-
ences, or even higher order formulae.

Some of the termination reasons depend on the accuracy used for approximat-
ing gradients. If we assume that all functions and gradients are computed within
machine precision and that the implementation is correct, there remain only the
following possibilities that could cause an error message:

1. The termination parameter ACC is too small, so that the numerical algorithm
plays around with round-off errors without being able to improve the solution.
Especially the Hessian approximation of the Lagrangian function becomes un-
stable in this case. A straightforward remedy is to restart the optimization
cycle again with a larger stopping tolerance.

2. The constraints are contradicting, i.e., the set of feasible solutions is empty.
There is no way to find out, whether a general nonlinear and non-convex set
possesses a feasible point or not. Thus, the nonlinear programming algorithms
will proceed until running in any of the mentioned error situations. In this
case, there the correctness of the model must be checked very carefully.

3. Constraints are feasible, but some of them there are degenerate, for example
if some of the constraints are redundant. One should know that SQP algo-
rithms require satisfaction of the so-called constraint qualification, i.e., that
gradients of active constraints are linearly independent at each iterate and in
a neighborhood of the optimal solution. In this situation, it is recommended
to check the formulation of the model.

However, some of the error situations do also occur, if because of wrong or non-
accurate gradients, the quadratic programming subproblem does not yield a descent
direction for the underlying merit function. In this case, one should try to improve
the accuracy of function evaluations, scale the model functions in a proper way, or
start the algorithm from other initial values.

4 Example

We consider a model function

h(x, t) =
x1(t

2 + x2t)

t2 + x3t + x4

,

x = (x1, . . . , x4)
T . The data are shown in the code below. In addition, we have two

equality constraints

h(x, t1) − y1 = 0 , h(x, t11) − y11 = 0 .

The code and the corresponding screen output follow.
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IMPLICIT NONE
INTEGER NMAX, MMAX, LMAX, LMMAX, MNN2MX, LWA, LKWA,

/ LLOGWA
PARAMETER (NMAX = 5,

/ MMAX = 2,
/ LMAX = 200000)
PARAMETER (LMMAX = MMAX + LMAX,

/ MNN2MX = MMAX + 2*NMAX + 2,
/ LWA = 5*NMAX*NMAX/2 + NMAX*MMAX + 41*NMAX
/ + 10*MMAX + 165,
/ LKWA = NMAX + 30,
/ LLOGWA = 2*MMAX + 10)
INTEGER M, ME, N, MNN2, L, MAXFUN, MAXIT, IPRINT,

/ MAXNM, IOUT, IFAIL, KWA, I, J
DOUBLE PRECISION X, FUNC, RES, GRAD, U, XL, XU, ACC,

/ ACCQP, RESSIZ, RHOB, WA, EPS, T, Y, W
DIMENSION X(NMAX), FUNC(LMMAX), GRAD(LMMAX,NMAX),

/ U(MNN2MX), XL(NMAX), XU(NMAX),
/ WA(LWA), KWA(LKWA), LOGWA(LLOGWA),
/ T(LMAX), Y(LMAX), W(NMAX), PI
LOGICAL LOGWA
EXTERNAL QL

C
C set parameters
C

M = MMAX
ME = MMAX
N = NMAX - 1
MNN2 = M + N + N + 2
L = LMAX
ACC = 1.0D-14
ACCQP = 1.0D-14
RESSIZ = 1.0D-4
RHOB = 0.0D0
MAXFUN = 20
MAXIT = 100
MAXNM = 0
IPRINT = 2
IOUT = 6
IFAIL = 0
PI = 3.1415D0
DO J=1,L

T(J) = DBLE(J)/DBLE(L)*0.5D0*PI
Y(J) = DSIN(T(J))

ENDDO
C
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C starting values and bounds
C

DO I = 1,N
XL(I) = -1.0D5
X(I) = 0.0D0
XU(I) = 1.0D5

ENDDO
C
C execute NLPLSX in reverse communication
C

1 CONTINUE
IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-1)) THEN

DO J = 1,L
CALL H(T(J), Y(J), N, X, FUNC(J))

ENDDO
CALL H(T(1), Y(1), N, X, FUNC(L+1))
CALL H(T(L), Y(L), N, X, FUNC(L+2))

ENDIF
IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-2)) THEN

DO J = 1,L
CALL DH(T(J), N ,X, W)
DO I=1,N

GRAD(J,I) = W(I)
ENDDO

ENDDO
CALL DH(T(1), N, X, W)
DO I=1,N

GRAD(L+1,I) = W(I)
ENDDO
CALL DH(T(L), N, X, W)
DO I=1,N

GRAD(L+2,I) = W(I)
ENDDO

ENDIF
C
C call NLPLSX
C

CALL NLPLSX(M,ME,LMMAX,L,N,NMAX,MNN2,X,FUNC,RES,
/ GRAD,U,XL,XU,ACC,ACCQP,RESSIZ,MAXFUN,MAXIT,MAXNM,RHOB,
/ IPRINT,IOUT,IFAIL,WA,LWA,KWA,LKWA,LOGWA,LLOGWA,QL)
IF (IFAIL.LT.0) GOTO 1

C
C end of main program
C

STOP
END
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C
C data fitting function
C

SUBROUTINE H(T, Y, N ,X, F)
IMPLICIT NONE
INTEGER N
DOUBLE PRECISION T, Y, X(N), F

C
F = X(1)*T*(T + X(2))/(T**2 + X(3)*T + X(4)) - Y

C
RETURN
END

C
C partial derivatives
C

SUBROUTINE DH(T, N ,X, DF)
IMPLICIT NONE
INTEGER N
DOUBLE PRECISION T, X(N), DF(N)

C
DF(1) = T*(T + X(2))/(T**2 + X(3)*T + X(4))
DF(2) = X(1)*T/(T**2 + X(3)*T + X(4))
DF(3) = -X(1)*T**2*(T + X(2))/(T**2 + X(3)*T + X(4))**2
DF(4) = -X(1)*T*(T + X(2))/(T**2 + X(3)*T + X(4))**2

C
RETURN
END

--------------------------------------------------------------------
START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

--------------------------------------------------------------------

Parameters:
N = 4
M = 2
ME = 2
MODE = 0
ACC = 0.1000D-13
ACCQP = 0.1000D-13
STPMIN = 0.1000D-13
MAXFUN = 20
MAXNM = 0
MAXIT = 100
IPRINT = 2

Output in the following order:
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IT - iteration number
F - objective function value
SCV - sum of constraint violations
NA - number of active constraints
I - number of line search iterations
ALPHA - steplength parameter
DELTA - additional variable to prevent inconsistency
KKT - Karush-Kuhn-Tucker optimality criterion

IT F SCV NA I ALPHA DELTA KKT
--------------------------------------------------------------------

1 0.49998775D+05 0.10D+01 2 0 0.00D+00 0.10D+01 0.15D+11
2 0.22676464D+05 0.10D+01 2 6 0.10D-04 0.00D+00 0.23D+06
3 0.22405881D+05 0.10D+01 2 4 0.39D-02 0.00D+00 0.38D+12
4 0.59116627D+04 0.14D+01 2 9 0.31D-05 0.00D+00 0.21D+05
5 0.95728313D+03 0.47D+00 2 1 0.10D+01 0.00D+00 0.29D+04
6 0.28031432D+03 0.19D+00 2 1 0.10D+01 0.00D+00 0.67D+03
7 0.16066648D+03 0.87D-01 2 1 0.10D+01 0.00D+00 0.31D+03
8 0.13378749D+03 0.72D-02 2 1 0.10D+01 0.00D+00 0.11D+02
9 0.13919220D+03 0.28D-04 2 1 0.10D+01 0.00D+00 0.35D+00
10 0.13895570D+03 0.90D-07 2 1 0.10D+01 0.00D+00 0.17D+00
11 0.13887425D+03 0.59D-09 2 1 0.10D+01 0.00D+00 0.23D-03
12 0.13887414D+03 0.41D-12 2 1 0.10D+01 0.00D+00 0.84D-07
13 0.13887414D+03 0.30D-15 2 1 0.10D+01 0.00D+00 0.13D-11
14 0.13887414D+03 0.82D-16 2 3 0.10D-01 0.00D+00 0.13D-12
15 0.13887414D+03 0.17D-20 2 1 0.10D+01 0.00D+00 0.23D-16

--- Final Convergence Analysis at Last Iterate ---

Objective function value: F(X) = 0.13887414D+03
Approximation of solution: X =

0.18373272D+01 -0.13349605D-04 0.13152201D+01 -0.20427155D-04
Approximation of multipliers: U =

-0.10225645D+04 -0.26999975D+04 0.00000000D+00 0.00000000D+00
0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00
0.00000000D+00 0.00000000D+00

Constraint values: G(X) =
0.16940659D-20 0.00000000D+00

Distance from lower bound: XL-X =
-0.10000184D+06 -0.10000000D+06 -0.10000132D+06 -0.10000000D+06

Distance from upper bound: XU-X =
0.99998163D+05 0.10000000D+06 0.99998685D+05 0.10000000D+06

Number of function calls: NFUNC = 33
Number of gradient calls: NGRAD = 15
Number of calls of QP solver: NQL = 19
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--- Final Convergence Analysis of NLPLSX ---

Number of observations: L = 200000
Residual: RES(X) = 0.13887414D+03
Approximation of solution: X =

0.18373272D+01 -0.13349605D-04 0.13152201D+01 -0.20427155D-04
Approximation of multipliers: U =

-0.10225645D+04 -0.26999975D+04 0.00000000D+00 0.00000000D+00
0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00
0.00000000D+00 0.00000000D+00

Number of function calls: NFUNC = 33
Number of derivative calls: NGRAD = 15
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