
NLPQLB: A Fortran Implementation of an SQP Algorithm

with Active Set Strategy for Solving Optimization Problems

with a Very Large Number of Nonlinear Constraints

- User’s Guide -

Address: Prof. K. Schittkowski
Department of Computer Science
University of Bayreuth
D - 95440 Bayreuth

Phone: (+49) 921 557750

Fax: +921 35557

E-mail: klaus.schittkowski@uni-bayreuth.de

Web: http://www.klaus-schittkowski.de

Date: November, 2010

Abstract

The Fortran subroutine NLPQLB solves smooth nonlinear programming prob-
lems with a large number of constraints, but a moderate number of variables. The
underlying algorithm applies an active set method proceeding from a given bound
mw for the maximum number of expected active constraints. A quadratic program-
ming subproblem is generated with mw linear constraints, the so-called working
set, which are internally exchanged from one iterate to the next. Only for active
constraints, i.e., a certain subset of the working set, new gradient values must be
computed. The line search takes the active constraints into account. In case of
computational errors as for example caused by inaccurate function or gradient eval-
uations, a non-monotone line search is activated. Numerical results are included
for some academic test problems, which show that nonlinear programs with up to
200,000,000 nonlinear constraints can be efficiently solved. The amazing observa-
tion is that despite of a large number of nearly dependent active constraints, the
underlying SQP code converges very fast. The usage of the code is documented and
illustrated by an example.

Keywords: SQP, sequential quadratic programming, nonlinear programming, large num-
ber of constraints, active set strategy, active constraints, non-monotone line search

1

1 Introduction

We consider the general optimization problem to minimize an objective function under
nonlinear equality and inequality constraints,

x ∈ IRn :

min f(x)

gj(x) = 0 , j = 1, . . . , me ,

gj(x) ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu ,

(1)

where x is an n-dimensional parameter vector. It is assumed that all problem functions
f(x) and gj(x), j = 1, . . ., m, are continuously differentiable on the whole IRn. To simplify
the notation, we omit the upper and lower bounds and get a problem of the form

x ∈ IRn :

min f(x)

gj(x) = 0 , j = 1, . . . , me ,

gj(x) ≥ 0 , j = me + 1, . . . , m .

(2)

We assume now that the nonlinear programming problem possesses a very large num-
ber of nonlinear inequality constraints on the one hand, but a much lower number of
variables. A typical situation is the discretization of an infinite number of constraints, as
indicated by the following case studies.

1. Semi-infinite optimization: Constraints must be satisfied for all y ∈ Y , where y is an
additional variable and Y ⊂ IRr,

x ∈ IRn :
min f(x)

g(x, y) ≥ 0 for all y ∈ Y .
(3)

Here we assume for simplicity that there is only one scalar restriction of inequality type.
If we discretize the set Y , we get a standard nonlinear programming problem, but with a
large number of constraints depending on the desired accuracy,

x ∈ IRn :
min f(x)

g(x, yj) ≥ 0 , j = 1, . . . , m ,
(4)

where yj is a discretization of Y , e.g., yj =
j−1
m−1

for j = 1, . . ., m in case of Y = [0, 1].

2. Min-max optimization: We minimize the maximum of a function f depending now on
two variables x ∈ IRn and y ∈ IRr,

min
x∈X

max
y∈Y

f(x, y) (5)

2

with suitable subsets X ⊂ IRn and Y ⊂ IRr, respectively. (5) is easily transformed into
an equivalent standard nonlinear programming problem of the form

x ∈ X :
min t

f(x, y) ≤ t for all y ∈ Y .
(6)

Again, we get a semi-infinite optimization problem provided that Y is an infinite set.

3. L∞-Approximation: The situation is similar to min-max optimization, but we want to
minimize the maximum of absolute values of a given set of functions,

min
x∈IRn

max
i=1,...,r

|fi(x)| . (7)

Typically, the problem describes the approximation of a nonlinear functions by a simpler
function, i.e., fi(x) = f(ti) − p(ti, x). In this case, f(t) is a given function depending
on a variable t ∈ IR and p(t, x) a member of a class of approximating functions, e.g., a
polynomial in t with coefficients x ∈ IRn. The problem is non-differentiable, but can be
transformed into a smooth one assuming that all functions fi(x) are smooth,

x ∈ IRn :

min t

fi(x) ≤ t i = 1, . . . , r ,

fi(x) ≥ −t i = 1, . . . , r .

(8)

4. Optimal control: The goal is to determine a control function u(t) depending on a time
variable t, which has to minimize a cost criterion subject to a state equation in form
of a system of differential equations and additional restrictions on the state and control
variables that are to be satisfied for all time values under consideration. If the control
problem is discretized in a proper way, we get a nonlinear programming problem with a
large number of constraints.

5. Mechanical structural optimization: Suppose we want to minimize the weight of a
mechanical structure. Typical constraints in this case are bounds for allowable stresses or
displacements, among very many other possible types of restrictions. After modeling the
structure by a finite element technique, we will get a standard nonlinear programming
problem. If certain restrictions are to be taken into account for each element of the
structure, we will get optimization problems with a large number of constraints. Moreover
a design engineer may wish to define different load cases, where part of the constraints is
duplicated subject to some other data. In Kneppe [5] it is reported that the optimization
of the frame of an airplane fuselage lead to an optimization problem with 187 variables
and 92,829 nonlinear constraints.

The examples mentioned above motivate the necessity to develop special methods for
problems with very many restrictions. The total number of constraints is so large that

3

either the linearized constraints cannot be stored in memory or slow down the solution
process unnecessarily. Although we can expect that most of the constraints are redundant,
we cannot predict a priori which constraints are the important ones, i.e., probably active
at the optimal solution, and which not.

Sequential quadratic programming methods construct a sequence of quadratic pro-
gramming subproblems by approximating the Lagrangian function

L(x, u)
.
= f(x)−

m∑
j=1

ujgj(x) (9)

quadratically and by linearizing the constraints. The resulting quadratic programming
subproblem

d ∈ IRn, δ ∈ IR :

min 1
2
dTBkd+�f(xk)Td

�gj(xk)Td+ gj(xk) = 0 , j = 1, . . .me ,

�gj(xk)Td+ gj(xk) ≥ 0 , j = me + 1, . . .m

(10)

can be solved by any available black-box algorithm, at least in principle. Here, xk denotes
an actual iterate and Bk an estimate of the Hessian of the Lagrangian function (9) updated
by the BFGS quasi-Newton method. However, if m is large, the Jacobian might become
too big to be stored in the computer memory.

The basic idea is to proceed from a user-provided value mw with

n ≤ mw ≤ m

by which we estimate the maximum number of expected active constraints. Only quadratic
programming subproblems withmw linear constraints are created which require lower stor-
age and allow faster numerical solution. Thus, one has to develop a strategy to decide,
which constraint indices are added to a working set of size mw

W
.
= {j1, . . . , jmw} ⊂ {1, . . . , m}

and which ones have to leave the working set. It is recommended to keep as many
constraints as possible in a working set, i.e., to keepmw as large as possible, since also non-
active constraint could contribute an important influence on the computation of search
direction.

It is, however, possible, that too many constraints are violated at a starting point even
if it is known that the optimal solution possesses only very few active constraints. To
avoid an unnecessary blow-up of the working set, it is also possible to extend the given
optimization problem by an additional artificial variable xn+1, which, if chosen sufficiently
large at start, decreases the number of active constraints. (1) or (2), respectively, is then

4

replaced by

x ∈ IRn+1 :

min f(x) + ρxn+1

gj(x) = 0 , j = 1, . . . , me ,

gj(x) + xn+1 ≥ 0 , j = me + 1, . . . , m ,

xn+1 ≥ 0 .

(11)

However, this transformation does not make sense in cases where the original problem
is transformed in a similar way as for example the min-max problem (6). Also, the choice
of the penalty parameter ρ and the starting value for xn+1 is crucial. A too rapid decrease
of xn+1 to zero must be prevented to avoid too many active constraints, which is difficult
to achieve in general. But if adapted to a specific situation, the transformation works
very well and can be extremely helpful.

There is another motivation for considering active sets. Since we want to solve prob-
lems with a large number of constraints, many of them are probably redundant. But in
any case, we have to require the evaluation of gradients for all of them in the working set.
Thus, an additional active set strategy is proposed with the aim to reduce the number
of gradient evaluations, and to calculate gradients at a new iterate only for a certain
subset of estimated active constraints. The underlying SQP algorithm is described in
Schittkowski [10], and the presented active set approach for solving problems with a large
number of constraints in Schittkowski [13].

Active set strategies are widely discussed in the nonlinear programming literature and
have been implemented in most of the available codes. A computation study for linear
constraints was even conducted in the 70’s, see Lenard [6], and Google finds 267,000 hits
for active set strategy nonlinear programming. It is out of the scope of this paper to
give a review. Some of these strategies are quite complex and a typical example is the one
included in the KNITRO package for large scale optimization, see Byrd, Gould, Nocedal,
and Waltz [1], based on linear programming and equality constrained subproblems.

From the technical point of view, NLPQLB is implemented in form of a Fortran
subroutine, where function and gradient values are passed through reverse communication,
see Schittkowski [17]. NLPQLB calls the SQP code NLPQLP, see again [17], with exactly
mw constraints, where the constraints of the working set are changed from one iteration
to the next.

The modified SQP-algorithm is described in Section 2 in detail. Since some heuristics
are included which prevent a rigorous convergence analysis, at least the most important
sufficient decrease property is available which shows that the algorithm is well-defined.
Some numerical test results based on a few academic examples are found in Section 3,
where the number of nonlinear constraints is very large, i.e., up to 200,000,000. More
details of the software implementation and the usage of the code NLPQLB are presented
in Section 4. Section 5 contains a simple example to become familiar with the software.

5

2 An Active-Set Sequential Quadratic Programming

Method

Since we want to modify the sequential quadratic programming algorithm presented in
Schittkowski [10, 11], we use the notation introduced there and omit details which are not
essential to understand the basic idea. A typical dense SQP code takes all constraints into
account, and requires real working arrays of length O(n2 + nm), see Schittkowski [17].
n is the number of variables and m the number of constraints of (1) without bounds.
In particular, we need mn double precision real numbers to store the gradients of the
constraint functions for the quadratic programming subproblem.

We assume now that n is of reasonable size, say below 100, but that m is very large
compared to n, say 1,000,000 or even more. Then either the available memory is insuffi-
cient to store the total gradient matrix of size nm, or the large set of linear constraints in
the subproblem slows down the quadratic programming solver. It is furthermore assumed
that there are no sparsity patterns in the Jacobian matrix which could be exploited. Thus,
we replace m by mw, where mw is a user-provided number depending on the available
memory and the expected number of active constraints, and which satisfies

n ≤ mw ≤ m .

It is supposed that a double precision array of size nmw can be addressed in memory.
Moreover, it has to be guaranteed that the active-set algorithm is identical with a standard
SQP method if m = mw.

We want to formulate smaller quadratic programming subproblems with mw linear
constraints. If xk denotes an iterate of the algorithm, vk the corresponding multiplier
estimate and Bk a positive definite estimate of the Hessian of the Lagrangian function
(9), we solve quadratic programs of the form

d ∈ IRn, δ ∈ IR :

min 1
2
dTBkd+�f(xk)Td + 1

2
σ2
kδ

2 ,

�gj(xk)Td+ (1− δ)gj(xk)
{
=
≥
}

0 , j ∈ J�
k ,

�gj(xj(k))Td+ gj(xk) ≥ 0 , j ∈ K
�
k .

(12)

An additional variable δ is introduced to prevent infeasible linear constraints, see Schitt-
kowski [10] for details. To get a descent direction in this case, it may happen that another
internal loop must be entered with an increasing penalty term for the additional variable,
see Schittkowski [10] for details. Note that the matrix Bk is positive definite, so that the
solution of (12) is always unique.

The index set J�
k is called the set of active constraints and is defined by

J�
k
.
= {1, . . . , me} ∪ {j : me < j ≤ m, gj(xk) < ε or v

(k)
j > 0} . (13)

6

It is assumed that |J�
k | ≤ mw, i.e., that all active constraints are part of the working set

Wk
.
= J�

k ∪K�
k (14)

with mw elements. The working set contains the active constraints plus a certain subset
of the non-active ones, K

�
k ⊂ K�

k , defined by

K�
k := {1, . . . , m} \ J�

k . (15)

vk = (v
(k)
1 , . . . , v(k)m)T is the actual multiplier estimate and ε a user provided error tolerance.

The indices j(k) in (12) denote previously computed gradients of constraints. Their
definition will become clear when investigating the algorithm in more detail. The idea
is to recalculate only gradients of active constraints and to fill the remaining rows of the
constraint matrix with previously computed ones.

We have to assume that there are not more than mw active constraints throughout
the algorithm. But we do not support the idea to include some kind of automatized phase
I procedure to project an iterate back to the feasible region whenever this assumption
is violated. We will have some safeguards in the line search algorithm to prevent this
situation. If, for example at a starting point, more than mw constraints are active, it is
preferred to stop the algorithm and to leave it to the user either to change the starting
point or to establish an outer constraint restoration procedure depending on the problem
structure.

After solving the quadratic programming subproblem (12) we get a search direction
dk and a corresponding multiplier vector uk. The new iterate is obtained by

xk+1
.
= xk + αkdk , vk+1

.
= vk + αk(uk − vk) (16)

for approximating the optimal solution x� ∈ IRn of (2) and the corresponding optimal
multiplier vector u� ∈ IRm. The steplength parameter αk is the result of an additional line
search sub-algorithm, by which we want to achieve a sufficient decrease of an augmented
Lagrangian merit function

ψr(x, v)
.
= f(x)− ∑

j∈J(x,v)
(vjgj(x)− 1

2
rjgj(x)

2)− 1

2

∑
j∈K(x,v)

v2j/rj . (17)

The index sets J(x, v) and K(x, v) are defined by

J(x, v)
.
= {1, . . . , me} ∪ {j : me < j ≤ m, gj(x) ≤ vj/rj} ,

K(x, v)
.
= {1, . . . , m} \ J(x, v) ,

(18)

see Schittkowski [10]. The corresponding penalty parameters rk
.
= (rk1 , . . . , r

k
m)

T that
control the degree of constraint violation, must carefully be chosen to guarantee a sufficient
descent direction of the merit function

φrk(αk) ≤ φrk(0) + αkμφ
′
rk
(0) , (19)

7

see Schittkowski [10], Ortega and Rheinboldt [8], or Wolfe [19] in a more general setting,
where

φrk(α)
.
= ψrk

((
xk
vk

)
+ α

(
dk

uk − vk

))
(20)

and

φ′
rk
(0) = �ψrk(xk, vk)

T

(
dk

uk − vk

)
. (21)

An additional requirement is that at each intermediate step of the line search procedure
at most mw constraints are active. If this condition is violated, the steplength is further
reduced until satisfying this condition. From the definition of our index sets, we have

J�
k ⊃ Jk

.
= J(xk, vk) . (22)

The starting point x0 is crucial from the viewpoint of numerical efficiency and must
be predetermined by the user. It has to satisfy the assumption that not more than mw

constraints are active, i.e., that J0 ⊂ W0. The remaining indices of W0 are to be set in
a suitable way and must not overlap with the active ones. Also W0 must be provided by
the user to have the possibility to exploit pre-existing knowhow about the position of the
optimal solution and its active constraints.

For all other parameters, suitable default values can be provided, e.g., v0 = 0 for
the initial multiplier guess, B0 = I for the initial estimate of the Hessian matrix of the
Lagrangian function of (1) and r0 = (1, . . . , 1)T for the initial penalty parameters. In
general it is assumed that v0j ≥ 0 for j = me + 1, . . ., m, that B0 is positive definite, and
that all coefficients of the vector r0 are positive.

The basic idea of the algorithm can be described in the following way: We determine
a working set Wk and perform one step of a standard SQP-algorithm with respect to
nonlinear programming problem with mw nonlinear constraints. Then the working set is
updated and the whole procedure repeated.

One particular advantage is that the numerical convergence conditions for the reduced
problem are applicable for the original one as well, since all constraints not in the working
set Wk are inactive, i.e., satisfy gj(xk) > ε for j ∈ {1, . . . , m} \Wk.

The line search procedure described in Schittkowski [10] can be used to determine a
steplength parameter αk, which is a combination of an Armijo-type steplength reduction
with a quadratic interpolation of φk(α). The proposed approach guarantees theoretical
convergence results, is very easy to implement and works satisfactorily in practice. But
in our case we want to achieve the additional requirement that all intermediate iterates
αk,i or xk + αk,i−1dk, respectively, do not possess more than mw violated constraints. By
introducing an additional loop reducing the steplength by a constant factor, it is always
possible to guarantee this condition. An artificial penalty term is added to the objective
function consisting of violated constraints. The modification of the line search procedure
prevents iterates of the modified SQP-method that violate too many constraints.

8

BFGS-updates are standard technique in nonlinear programming and yield excellent
convergence results both from the theoretical and numerical point of view. The modifica-
tion to guarantee positive definite matrices Bk was proposed by Powell [9]. The update
is performed with respect to the corrections xk+1 − xk, and �xL(xk+1)−�xL(xk).

Since a new restriction is included in the working set Wk+1 only if it belongs to J�
k+1,

we get always new and actual gradients in the quadratic programming subproblem (12).
But gradients can be reevaluated for any larger set, e.g., Wk+1. In this case we can expect
even a better performance of the algorithm.

The proposed modification of the standard SQP-technique is straightforward and easy
to analyze. We want to stress out that its practical performance depends mainly on the
heuristics used to determine the working set Wk. The first idea could be to take out those
constraints from the working set which got the largest function values. However, the
numerical size of a constraint depends on its internal scaling. In other words, we cannot
conclude from a large restriction function value that the constraint is probably inactive.

To get a decision on constraints in the working set Wk that is independent of the
scaling of the functions as much as possible, we propose the following rules:

• Among the constraints feasible at xk and xk+1, keep those in the working set that
were violated during the line search. If there are too many of them according to
some given constant, select constraints for which

gj(xk+1)− ε

gj(xk+1)− fj(xk + αk,i−1dk)

is minimal. The decision whether a constraint is feasible or not, is performed with
respect to the given tolerance ε.

• In addition keep the restriction in the working set for which gj(xk + dk) is minimal.

• Take out those feasible constraints from the working set, which are the oldest ones
with respect to their successive number of iterations in the working set.

Under the assumptions mentioned so far, we can prove that

φ′
rk
(0) = �ψrk(xk, vk)

T

(
dk

uk − vk

)
< −1

4
γ‖dk‖2 (23)

for all k and a positive constant γ, see Schittkowski [13].
It is possible that we get a descent direction of the merit function, but that φ′

r(0)
is extremely small. To avoid interruption of the whole iteration process, the idea is to

9

repeat the line search with another stopping criterion. Instead of testing (23), we accept
a stepsize αk as soon as the inequality

φrk(αk) ≤ max
k−p(k)<=j<=k

φrj(0) + αkμφ
′
rk
(0) (24)

is satisfied, where p(k) is a predetermined parameter with p(k) = min{k, p}, p a given
tolerance. Thus, we allow an increase of the reference value φrk(0) in a certain error
situation, i.e., an increase of the merit function value. In case of k = 0, the reference
value is adapted by a factor greater than 1, i.e., φrjk

(0) is replace by tφrjk
(0), t > 1. The

basic idea to store reference function values and to replace the sufficient descent property
by a sufficient ’ascent’ property in max-form, see Dai and Schittkowski [2] for details and
a convergence proof.

3 Numerical Tests

The modified SQP-algorithm is implemented in form of a Fortran subroutine with name
NLPQLB. As pointed out in the previous section, an iteration consists of one step of
a standard SQP-method, in our case of the code NLPQLP [17], with mw constraints.
Basically, only the definition of the working set and some rearrangements of index sets
must be performed. Then NLPQLP is called to perform only one iteration proceeding
from the iterates xk, vk, Bk, rk and J�

k .
The algorithm as described in the previous section, requires an estimate of the max-

imum size of the working set, mw, a starting point x0 ∈ IRn, and an initial working set
W0 with J�

0 ⊂W0, see (13) for a definition of the active set J�
k . A straightforward idea is

to sort the constraints according to their function values at x0, and to take the first mw

constraints in increasing order. However, one would have to assume that all constraints
are equally scaled, a very reasonable assumption in case of scalar semi-infinite problems
of the the form (3).

Otherwise, an alternative, much simpler proposal could be to include all constraints in
the initial working set for which gj(x) ≤ ε, and to fill the remaining position with indices
for which gj(x) > ε. A possible Fortran code fragment, where ACC corresponds to ε, is

IF (IFAIL.EQ.0) THEN

I = 1

K = MW

DO J=1,M

IF (G(J).LE.ACC) THEN

KWA(I) = J

I = I + 1

ELSE

IF ((K.GE.I).AND.(K.GT.0)) THEN

KWA(K) = J

10

K = K - 1

ENDIF

ENDIF

IF (I-1.GT.MW) THEN

WRITE(IOUT,*)’ *** ERROR: Too many active ’,

/ ’constraints at start!’

STOP

ENDIF

ENDDO

ENDIF

Here we assume that there are no equality constraints. Otherwise, they must be came
part of the working set with j ∈ W0 for all 1 ≤ j ≤ me. Any other initialization of
the working set depending on available information about the expected active constraints
may be applied.

Some numerical experiments are reported to show that the resulting algorithm works
as expected. The examples are small academic test problems taken from the literature, but
somewhat modified in particular to get problems with a varying number of constraints.
They have been used before to get the results published in Schittkowski [13], and are
now solved with up to 200,000,000 instead of maximal 10,000 constraints. Gradients are
evaluated analytically.

P1: The nonlinear semi-infinite test problem is taken from Tanaka, Fukushima, and
Ibaraki [18],

x1, x2, x3 ∈ IR :
min x21 + x22 + x23

−x1 − x2 exp (x3y)− exp (2y) + 2 exp(4y) ≥ 0 for all y ∈ [0, 1]
(25)

with starting point x0 = (1,−1, 2)T . After a discretization of the interval [0, 1] with
m = 4 · 107 equidistant points, we get a nonlinear program with 40,000,000 constraints.
Figure 1 shows the curve plots over y for the starting point and the optimal solution
x� = (−0.21331259,−1.3614504, 1.8535473)T . Although only one constraint is active at
the optimal solution x�, the starting point x0 violates about 50 % of all constraints. Thus,
the initial working set W0 must be sufficiently large and we choose mw = 2 · 107. For the
same reason, we restrict the discretization of the interval [0, 1] and the total number of
constraints by m = 4 · 107.
P1F: This is the same nonlinear semi-infinite test problem as before. It is to be shown
that the simple feasibility modification (11) by introducing an additional variable x4 and
a penalty term with ρ = 104 in the modified objective function reduces the number of

11

-3

-2

-1

0

1

2

3

0 0.2 0.4 0.6 0.8 1

g(x, y)

y

x�x0

Figure 1: Function Plot for P1

intermediate active constraints significantly. The test problem is now given in the form

x1, . . . , x4 ∈ IR :

min x21 + x22 + x23 + ρx4

−x1 − x2 exp (x3y)− exp (2y) + 2 exp(4y) ≥ −x4
for all y ∈ [0, 1] ,

x4 ≥ 0 .

(26)

The equidistant discretization is performed with m = 2 ·108 points, and the initial iterate
is x0 = (1,−1, 2, 100)T . No constraint is active at the starting point and we are able to
choose a much smaller working set of size mw = 2 · 103.
P3: The nonlinear semi-infinite test problem is very similar to P1, see Tanaka, Fukushima,
and Ibaraki [18],

x1, x2, x3 ∈ IR :

min exp x1 + exp x2 + exp x3

x1 + x2y + x3y
2 − 1

1 + y2
≥ 0 for all y ∈ [0, 1]

(27)

with starting point x0 = (1, 0.5, 0)T . An equidistant discretization of the interval [0, 1]
with m = 2·108 equidistant points is chosen and the size of the working set ismw = 5·105.
Figure 2 shows the curve plots over y for the starting point and the optimal solution
x� = (1.0066047,−0.12687988,−0.37972483)T . One constraint is active at the starting
point and two at the optimal solution. However, we have to expect a larger number of
nearly active constraints. Since the active set at the starting point differs significantly
from the active set at the optimal solution, we have to choose a relatively large working
set.

12

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

g(x, y)

y

x�x0

Figure 2: Function Plot for P3

P4: This is a nonlinear semi-infinite test problem with two free variables from the interval
[0, 1]× [0, 1], see Tanaka, Fukushima, and Ibaraki [18],

x1, x2, x3 ∈ IR :

min x21 + x22 + x23

−x1(y1 + y22 + 1)− x2y2(y1 − y2)− x3y2(y1 + y2 + 1) ≥ 1 ,

for all y1 ∈ [0, 1] and y2 ∈ [0, 1]

(28)

with starting values x0 = (−2,−1, 0)T . Again, we use 200,000,000 uniformly distributed
points of the interval [0, 1]× [0, 1] to discretize it. Since only one constraint is active for
y1 = y2 = 0, the size of the working set can be as low as mw = 200. Figure 3 shows the
curvature plot over y1 and y2 for the optimal solution x� = (−1, 0, 0)T .

TP332: The problem is a modification of the test problem TP332 of Schittkowski [12] to
get a larger number of constraints,

x1, x2 ∈ IR :

min
m∑
i=1

(
(log ti + x2 sin ti + x1 cos ti)

2 + (log ti + x2 cos ti − x1 sin ti)
2
)

arctan

(
1/ti − x1
log ti + x2

)
≤ π

60
, i = 1, . . . , m

(29)
with starting values x0 = (0.75, 0.75)T , where ti

.
= π(1/3+ (i−1)/180). We proceed from

m = 2 · 108 constraints, and the size of the working set is mw = 100. Only one constraint
is active at the starting and the optimal solution x� = (0.94990963, 0.049757167)T .

TP374: The problem is extended in a straightforward way to allow more than 35 con-

13

0 0.2 0.4 0.6 0.8 1y1
0

0.2
0.4

0.6
0.8

1

y2

0
0.5
1

1.5
2

g(x, y)

Figure 3: Function Plot for P4

straints given in Schittkowski [12],

x ∈ IR10 :

min x10

z(ti)− (1− x10)
2 ≥ 0 , i = 1, . . . , r ,

−z(ti) + (1 + x10)
2 ≥ 0 , i = r + 1, . . . , 2r ,

−z(ti) + x210 ≥ 0 , i = 2r + 1, . . . , 3.5r ,

(30)

where

z(t)
.
=

(
9∑

k=1

xk cos(kt)

)2

+

(
9∑

k=1

xk sin(kt)

)2

and
ti = π(i− 1)0.025 , i = 1, . . . , r ,
ti = π(i− 1− r)0.025 , i = r + 1, . . . , 2r ,
ti = π(1.2 + (i− 1− 2r)0.2)0.25 , i = 2r + 1, . . . , 3.5r .

Starting solution is x0 = (0.1, 0.1, . . . , 0.1, 1)T . By choosing r = 108/3.5, we get 100,000,000
nonlinear constraints. Because of a large number of intermediate active constraints, we
have to restrict the total number of constraints and let mw = 2 ·106. The optimal solution
is

x� = (0.25559274, 0.25291560, 0.29120000, 0.26826036, 0.18929502,
0.082428568, −0.014405861, −0.070673846, −0.18878711, 0.29170025)T .

14

-0.00015

-0.0001

-5e-005

0

5e-005

0.0001

0.00015

-1 -0.5 0 0.5 1

f(x�, t)

t

Figure 4: Function Plot for U3

U3: The goal is to approximate the exponential function by a rational one, i.e., to
minimize the maximum norm of r functions, see Luksan [7],

min
x∈IR5

max{| x1 + x2ti
1 + x3ti + x4t2i + x5t3i

− exp(ti)| , i = 1, . . . , r} , (31)

where

ti
.
= 2

i− 1

r − 1
− 1

for i = 1, . . ., r. Starting point is x0 = (0.5, 0, 0, 0, 0)T . The problem is transformed
into a smooth nonlinear program of the form (8) with m

.
= 2r constraints and n + 1

variables. The starting point for the additional variable is set to t = 20, and the number
of constraints is r = 5 · 107 or m = 108, respectively, where we expect a large number
of intermediate active constraints. Thus, we allow up to mw = 5 · 105 constraints in the
working set. Figure 4 shows the curvature plot of the residual function f(x, t) as defined
by (31) over t for the optimal solution

x� = (0.99987768, 0.25365090,−0.74654084, 0.24513247,−0.037465273)T .

L5: The problem is similar to the previous one. Again, the sum of absolute values of a set
of r differentiable functions is to be minimized, see Luksan [7], but now with additional

15

linear equality and inequality constraints,

x ∈ IR7 :

min max {|1 + 2
7∑

j=1

cos(2πxj sin θi)| , i = 1, . . . , r}
−x4 + x6 = 1 ,
x7 = 3.5 ,

−x1 + x2 ≥ 0.4 ,
−x2 + x3 ≥ 0.4 ,
−x3 + x4 ≥ 0.4 ,
−x4 + x5 ≥ 0.4 ,
−x5 + x6 ≥ 0.4 ,
−x6 + x7 ≥ 0.4 ,

(32)

where
θj

.
=

π

180
(8.5 + 0.5i)

for i = 1, . . ., r. Starting point is x0 = (0.5, 1, 1.5, 2, 2.5, 3, 3.5)T . The problem is trans-
formed into a smooth nonlinear program (8) with m

.
= 2r + 8 constraints and n + 1

variables. The starting point for the additional variable is set to t = 1. We set r = 108−4
leading to m = 2 · 108 constraints. The number of constraints in the working set is
mw = 4 · 104. Figure 5 shows the curvature plot of the residual function f(x, t) as defined
by (32) over θ for the optimal solution

x� = (0.34626538, 0.75414273, 1.2127664, 1.7308550, 2.1702278, 2.7308550, 3.5)T .

We observe a larger number of non-connected active constraints at the optimal solution.

E5: Again, we minimize the maximum norm of r functions, see Hald and Madsen [4],

min
x∈IR4

max{(x1 + x2ti − exp ti)
2 + (x3 + x4 sin ti − cos ti)

2 , i = 1, . . . , r} (33)

where

ti
.
=

4i

r

for i = 1, . . ., r. Starting point is x0 = (25, 5,−5,−1)T . The problem is transformed into
a smooth nonlinear program of the form (8) with m

.
= r constraints and n + 1 variables.

The starting point for the additional variable is set to t = 1, 000. For r = 2 · 108 we get
m = 2 · 108 constraints, and the number of constraints in the working set is mw = 5 · 104.
Figure 6 shows the curvature plot of the residual function f(x, t) as defined by (33) over
t for the optimal solution

x� = (−10.112611, 13.376871,−0.45892449,−0.17124647)T .

16

-0.1
-0.08
-0.06
-0.04
-0.02

0
0.02
0.04
0.06
0.08
0.1

0 0.2 0.4 0.6 0.8 1

f(x�, θ)

θ

Figure 5: Function Plot for L5

0

20

40

60

80

100

120

140

0 0.5 1 1.5 2 2.5 3 3.5 4

f(x�, t)

t

Figure 6: Function Plot for E5

17

name n m mw f �

P1 3 40,000,000 20,000,000 5.33469
P1F 4 200,000,000 2,000 5.33469
P3 3 200,000,000 500,000 4.30118
P4 3 200,000,000 200 1.00000
TP332 2 200,000,000 100 398.587
TP374 10 100,000,000 2,000,000 0.434946
U3 6 100,000,000 500,000 0.00012399
L5 8 200,000,000 40,000 0.0952475
E5 5 200,000,000 50,000 125.619

Table 1: Test Examples

The Fortran codes are compiled by the Intel Visual Fortran Compiler, Version 10.1,
EM64T, under Windows Vista and Intel(R) Core(TM) Duo CPU E8500, 3.16 GHz, and 8
GB RAM. The working arrays of the routine calling NLPQLB are dynamically allocated.
Quadratic programming subproblems are solved by the primal-dual method of Goldfarb
and Idnani [3] based on numerically stable orthogonal decompositions. NLPQLB is exe-
cuted with termination accuracy ε = 10−8. Numerical experiments are reported in Table 2
where we use the following notation:

name - identification of test example
n - number of variables in standard form (1)
m - total number of constraints in standard form (1)
mw - number of constraints in the working set
f � - final objective function value
|Jmax| - maximum number of active constraints
nf - number of simultaneous function computations, i.e.,

of objective function and all constraints at a given
iterate

ntot
g - total number of gradient computations, i.e., of all in-

dividual constraint gradient evaluations
nits - number of iterations or simultaneous gradient com-

putations, i.e., of gradients of objective function and
all constraints at a given iterate

time - calculation time in seconds
f � - final objective function value

It is obvious that the efficiency of an active set strategy strongly depends on how close
the active set at the starting point to that of the optimal solution is. If dramatic changes
of active constraints are expected as in case of P1, i.e., if intermediate iterates with a large
number of violated constraints are generated, the success of the algorithm is marginal.

18

name |Jmax| nf ntot
g nits tcalc

P1 5,579,011 20 27,597,939 13 97
P1F 801 23 6,728 15 283
P3 129,237 12 1,558,343 10 77
P4 1 4 203 4 16
TP332 1 12 110 11 464
TP374 584,004 150 20,238,000 89 3,361
U3 285,901 191 5,145,498 58 903
L5 39,976 80 207,960 24 1,224
E5 41,674 30 212,245 21 392

Table 2: Numerical Results

On the other hand, practical optimization problems often have special structures from
where good starting points can be predetermined. Examples P1F and especially P4 and
TP332 show a dramatic reduction of derivative calculations, which is negligible compared
to the number of function calls.

Since the constraints are nonlinear and non-convex, we have to compute all m con-
straint function values at each iteration to check feasibility and to predict the new active
set. The total number of individual constraint function evaluations is nf ·m.

Calculation times are excessive and depend mainly on data transfer operations from
and to the standard swap file of Windows, and the available memory in core, which is 4
GB in our case. To give an example, test problem TP332 requires 42 sec for m = 2 · 107
constraints and less than 3 sec for m = 2 · 106 constraints.

Note that the code NLPQLB requires additional working space in the order of 2m
double precision real numbers plus mw · (n + 1) double precision numbers for the partial
derivatives of constraints in the working set. Thus, the total memory to run a test problem
with m = 2 · 8 constraints requires at least 600,000,000 double precision numbers and in
addition at least 400, 000, 000 logical values.

It is amazing that numerical instabilities due to degeneracy are prevented. The huge
number of constraints indicates that the derivatives are extremely close to each other,
making the optimization problem unstable. The constraint qualification, i.e., the linear
independence of active constraints, is more or less violated. We benefit from the fact that
derivatives are analytically given.

4 Program Documentation

NLPQLB is implemented in form of a Fortran subroutine, which computes appropriate
indices of constraints belonging to the working set. A nonlinear program with the same
objective function, but a reduced set of mw constraints is formulated and solved by one

19

iteration of NLPQLP, see Schittkowski [17]. Model functions and gradients are called
by reverse communication. The user has to provide functions and gradients in the same
program which executes NLPQLB, according to the following rules:

1. Choose starting values for the variables to be optimized, and store them in X.

2. Compute objective and all constraint function values, store them in F and G, re-
spectively.

3. Predetermine the initial working set which must contain all equality constraints
and at least all violated inequality constraints, and store the indices in the first MW
positions of the integer array KWA.

4. Compute gradients of objective function and all constraints, and store them in DF
and DG, respectively. The J-th row of DG contains the gradient of the KWA(J)-th
constraint, J=1,...,MW.

5. Set IFAIL=0 and execute NLPQLB.

6. If NLPQLB returns with IFAIL=-1, compute objective function and constraint val-
ues for all variable values in X, store them in F and G, and call NLPQLB again.

7. If NLPQLB terminates with IFAIL=-2, compute gradient values with respect to
the variable values in X, and store them in DF and DG. Only derivatives for active
constraints, ACTIVE(KWA(J))=.TRUE., need to be computed and stored in the
J-th row of DG, J=1,...,MW. Then call NLPQLB again.

8. If NLPQLB terminates with IFAIL=0, the internal stopping criteria are satisfied.
In case of IFAIL>0, an error occurred.

Here, MW (=mw) is a user provided guess for the maximum number of expected
violated constraints with n ≤ mw ≤ m.

Usage:

CALL NLPQLB (M, ME, MW, MWMAX, N,
/ NMAX, MNN2, X, F, G,
/ DF, DG, U, XL, XU,
/ C, D, ACC, ACCQP, MAXFUN,
/ MAXIT, MAXNM, RHOB, IPRINT, IOUT,
/ IFAIL, WA, LWA, KWA, LKWA,
/ ACT, LACT, QPSLVE)

20

Definition of the parameters:

M : Total number of constraints.
ME : Number of equality constraints.

MW : Size of working set. MW must be at least one and not
greater than M. If M is greater than N, MWmust be greater
than N. Otherwise, MW must be equal to M and is a guess
for the maximum number of expected active constraints.

MWMAX : Row dimension of DG. MWmust not be greater than MW-
MAX. If M is greater than N, MWMAX must be at least
N.

N : Number of optimization variables.

NMAX : Row dimension of C. NMAX must be at least two and
greater than N.

MNN2 : Must be equal to MW+N+N+2 when calling NLPQLP.

X(NMAX) : Initially, X has to contain starting values for the optimal
solution. On return, X is replaced by the current iterate.
In the driving program the dimension of X has to be equal
to NMAX.

F : On return, F contains the final objective function value.

G(M) : On return, G contains the constraint function values at the
final iterate X. In the driving program, the dimension of G
has to at least M.

DF(NMAX) : DF contains the current gradient of the objective function.

DG(MWMAX,NMAX) : DG contains the gradients of the active constraints (AC-
TIVE(K(J))=.TRUE., J=1,...,MW) at a current iterate X.
The remaining rows are filled with previously computed
gradients. In the driving program, the row dimension of
DG has to be equal to MWMAX.

U(MNN2) : U contains the multipliers with respect to the actual iterate
stored in X. The first MW locations contain the multipliers
of the MW nonlinear constraints belonging to the working
set, the subsequent N locations the multipliers of the lower
bounds, and the final N locations the multipliers of the
upper bounds. At an optimal solution, all multipliers with
respect to inequality constraints should be nonnegative.

21

XL(N),XU(N) : On input, the one-dimensional arrays XL and XU must
contain the lower and upper bounds of the variables, re-
spectively.

C(NMAX,NMAX) : On return, C contains the last computed approximation
of the Hessian matrix of the Lagrangian function. In the
driving program, the row dimension of C has to be equal
to NMAX.

D(NMAX) : Auxiliary array for linear part in the QP.

ACC : The user has to specify the desired final accuracy (e.g.
1.0D-7). The termination accuracy should not be much
smaller than the accuracy by which gradients are com-
puted.

ACCQP : The tolerance is needed for the QP solver to perform sev-
eral tests, for example whether optimality conditions are
satisfied or whether a number is considered as zero or not.
If ACCQP is less or equal to zero, then the machine preci-
sion is computed by NLPQLB and subsequently multiplied
by 1.0D+4.

MAXFUN : The integer variable defines an upper bound for the number
of function calls during the line search (e.g. 20). MAXFUN
must not be greater than 50.

MAXIT : Maximum number of outer iterations, where one itera-
tion corresponds to one formulation and solution of the
quadratic programming subproblem, or, alternatively, one
evaluation of gradients (e.g. 100).

MAXNM : Stack size for storing merit function values at previous
iterations for non-monotone line search (e.g. 10). If
MAXNM=0, monotone line search is performed. MAXNM
should not be greater than 50.

RHOB : Parameter for initializing a restart in case of IFAIL=2 by
setting the BFGS-update matrix to rhob*I, where I denotes
the identity matrix. The number of restarts is bounded by
MAXFUN. No restart is performed if RHOB is set to zero.
Must be non-negative (e.g. 100).

22

IPRINT : Specification of the desired output level.

0 - No output of the program.

1 - Only final convergence analysis.

2 - One line of intermediate results for each iteration.
3 - More detailed information for each iteration.
4 - More line search data displayed.

IOUT : Integer indicating the desired output unit number, i.e., all
write-statements start with ’WRITE(IOUT,... ’.

IFAIL : The parameter shows the reason for terminating a solution
process. Initially, IFAIL must be set to zero. On return,
IFAIL could contain the following values:

-2 - Compute new gradient values.

-1 - Compute new function values.

0 - Optimality conditions satisfied.

1 - Stop after MAXIT iterations.

2 - Uphill search direction.

3 - Underflow when computing new BFGS-update matrix.

4 - Line search exceeded MAXFUN iterations.
5 - Length of a working array too short.

6 - False dimensions, e.g., M<MW, N≥NMAX,

MNN2
=MW+N+N+2, etc.

7 - Search direction close to zero at infeasible iterate.
8 - Starting point violates lower or upper bound.

9 - Wrong input parameter, e.g., MODE, IPRINT, IOUT.

10 - Inconsistency in QP, division by zero.

11 - There are too many active constraints, increase MW.

>100 - Error message of QP solver.

WA(LWA) : WA is a real working array of length LWA.

LWA : Length of the real working array WA. LWA must be at
least at least 23*N+2*M+7*MWMAX+150.

NOTE: The standard QP-solver coming together
with NLPQLP (QL) needs additional memory for
3*NMAX*NMAX/2+10*NMAX+2*MWMAX+1 real
numbers.

23

KWA(LKWA) : KWA is an integer working array of length LKWA.

LKWA : Length of the integer working array KWA. LKWA should
be at least 2*MW+max(N+1,MW/NMAX)+25. The first
MW positions in KWA are used for storing the working set.
When starting NLPQLB, KWA has to contain a set of MW
indices of constraints for the first working set including all
constraints active at the starting point X, i.e., for which
G(J) is less than ACC, j=1,...,M. Remaining positions of
G are filled with indices belonging to inactive constraints,
i.e., for which G(J) is greater or equal to ACC for J=1,...,M.

NOTE: The standard QP-solver coming together with
NLPQLP (QL) needs additional memory for N integer
numbers.

ACTIVE(LACTIV) : The logical array indicates constraints, which NLPQLB
considers to be active at the last computed iterate, i.e.,
G(J) is active, if and only if ACTIVE(K(J)) is true for
J=1,...,MW.

LACTIV : Length of the logical array ACTIVE. The length of the
logical array should be at least 2*M + 2*MW + 11.

QPSLVE : External subroutine to solve the quadratic programming
subproblem. The calling sequence is

CALL QPSLVE(M,ME,MWMAX,N,NMAX,MNN,C,D,A,B,

/ XL,XU,X,U,EPS,MODE,IOUT,IFAIL,IPRINT,

/ WAR,LWAR,IWAR,LIWAR)

For more details about the choice and dimensions of argu-
ments, see [15].

Some of the termination reasons depend on the accuracy used for approximating gradi-
ents. If we assume that all functions and gradients are computed within machine precision
and that the implementation is correct, there remain only the following possibilities that
could cause an error message:

1. The termination parameter ACC is too small, so that the numerical algorithm plays
around with round-off errors without being able to improve the solution. Especially
the Hessian approximation of the Lagrangian function becomes unstable in this case.
A straightforward remedy is to restart the optimization cycle again with a larger
stopping tolerance.

2. The constraints are contradicting, i.e., the set of feasible solutions is empty. There
is no way to find out whether a general nonlinear and non-convex set possesses a
feasible point or not. Thus, the nonlinear programming algorithms will proceed

24

until running in any of the mentioned error situations. In this case, the correctness
of the model must be very carefully checked.

3. Constraints are feasible, but some of them there are degenerate, for example if some
of the constraints are redundant. One should know that SQP algorithms assume
the satisfaction of the so-called constraint qualification, i.e., that gradients of active
constraints are linearly independent at each iterate and in a neighborhood of an
optimal solution. In this situation, it is recommended to check the formulation of
the model constraints.

However, some of the error situations also occur if, because of wrong or inaccurate
gradients, the quadratic programming subproblem does not yield a descent direction for
the underlying merit function. In this case, one should try to improve the accuracy of
function evaluations, scale the model functions in a proper way, or start the algorithm
from other initial values.

NLPQLB returns the best iterate obtained. In case of successful termination (IFAIL=0),
this is always the last iterate, in case of non-successful return (IFAIL>0) an eventually
better previous iterate. The success if measured by objective function value and con-
straint violation. Note that the output of constraints and multiplier values is suppressed
for m > 10, 000.

The QP solver is defined in form of an external subroutine to allow a replacement in
case of exploiting special sparsity patterns. A typical example is the usage of NLPQLP
for solving least squares problems, where artificially introduced equality constraints lead
to a Jacobian which consist partially of the identity matrix, see Schittkowski [14, 16].

5 Example

To give an example how to organize the code, we consider test example (27), i.e., problem
P3,

x1, x2 ∈ IR :

min exp(x1) + exp(x2) + exp(x3)

x1 + x2y + x3y
2 − 1

1 + y2
≥ 0

for all y ∈ [0, 1] .

(34)

The Fortran source code for executing NLPQLP is listed below. Gradients are given
in analytical form. The function block inserted in the main program can be replaced by a
subroutine call. Also the gradient evaluation is easily exchanged by a difference formula.

IMPLICIT NONE

INTEGER NMAX,MMAX,MWMAX,MNN2X,LWA,LKWA,LACTIV

PARAMETER (NMAX = 4, MMAX = 10000, MWMAX = 20)

25

PARAMETER (MNN2X = MWMAX + NMAX + NMAX + 2,

/ LWA = 1.5*NMAX*NMAX + 9*MWMAX + 33*NMAX + 2*MMAX + 150,

/ LKWA = NMAX + 2*MWMAX + MAX(NMAX+1,MWMAX/NMAX) + 25,

/ LACTIV = 2*MMAX + 2*MWMAX + 11)

INTEGER KWA(LKWA),N,ME,M,MW,MNN2,MAXIT,MAXFUN,IPRINT,

/ MAXNM,IOUT,IFAIL,I,J,K

DOUBLE PRECISION X(NMAX),F,G(MMAX),DF(NMAX),

/ DG(MWMAX,NMAX),U(MNN2X),XL(NMAX),XU(NMAX),C(NMAX,NMAX),

/ D(NMAX),WA(LWA),ACC,ACCQP,RHOB,Y

LOGICAL ACTIVE(LACTIV)

EXTERNAL QL

C

C Set some constants and initial values

C

ACC = 1.0D-10

ACCQP = 1.0D-12

MAXIT = 500

MAXFUN = 20

MAXNM = 20

RHOB = 0.1D0

IPRINT = 2

N = NMAX - 1

MW = MWMAX

M = MMAX

ME = 0

MNN2 = MW + N + N + 2

IFAIL = 0

IOUT = 6

C

C ... initialize problem data

C

DO I=1,N

XL(I) = -100.0D0

XU(I) = 100.0D0

ENDDO

X(1) = 1.0D0

X(2) = 0.5D0

X(3) = 0.0D0

C

C==

C

C ... compute function values

C

1 CONTINUE

26

F = DEXP(X(1)) + DEXP(X(2)) + DEXP(X(3))

DO J=1,M

Y = DBLE(J-1)/DBLE(M-1)

G(J) = X(1) + X(2)*Y + X(3)*Y**2 - 1.0D0/(1.0D0+Y**2)

ENDDO

IF (IFAIL.EQ.-1) GOTO 4

C

C==

C

C ... determine initial working set

C

I = 1

K = MW

DO J=1,M

IF (IFAIL.EQ.0) THEN

ACTIVE(J) = .TRUE.

IF (G(J).LE.ACC) THEN

KWA(I) = J

I = I + 1

ELSE

IF ((K.GE.I).AND.(K.GT.0)) THEN

KWA(K) = J

K = K - 1

ENDIF

ENDIF

IF (I-1.GT.MW) THEN

WRITE(IOUT,*)’ *** ERROR: Too many active ’,

/ ’constraints at start!’

STOP

ENDIF

ENDIF

ENDDO

C

C==

C

C ... compute partial derivatives

C

2 CONTINUE

DO I=1,N

DF(I) = DEXP(X(I))

ENDDO

DO I=1,MW

J = KWA(I)

IF (ACTIVE(J)) THEN

27

Y = DBLE(J-1)/DBLE(M-1)

DG(I,1) = 1.0D0

DG(I,2) = Y

DG(I,3) = Y**2

ENDIF

ENDDO

IF (IFAIL.EQ.-2) GOTO 4

C

C==

C

C ... call NLPQLB

C

4 CONTINUE

CALL NLPQLB(M,ME,MW,MWMAX,N,NMAX,MNN2,X,F,G,DF,DG,U,XL,XU,

/ C,D,ACC,ACCQP,MAXFUN,MAXIT,MAXNM,RHOB,IPRINT,

/ IOUT,IFAIL,WA,LWA,KWA,LKWA,ACTIVE,LACTIV,QL)

C

C ... repeat, if necessary

C

IF (IFAIL.EQ.-1) GOTO 1

IF (IFAIL.EQ.-2) GOTO 2

C

STOP

END

The following output is generated:

--

START OF THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM

--

Parameters:

N = 3

M = 20

ME = 0

MODE = 0

ACC = 0.1000D-09

ACCQP = 0.1000D-11

STPMIN = 0.1000D-09

MAXFUN = 20

MAXNM = 20

MAXIT = 500

IPRINT = 2

28

Output in the following order:

IT - iteration number

F - objective function value

SCV - sum of constraint violations

NA - number of active constraints

I - number of line search iterations

ALPHA - steplength parameter

DELTA - additional variable to prevent inconsistency

KKT - Karush-Kuhn-Tucker optimality criterion

IT F SCV NA I ALPHA DELTA KKT

--

1 0.53670031D+01 0.00D+00 20 0 0.00D+00 0.00D+00 0.37D+01

2 0.50225530D+01 0.00D+00 7 2 0.10D+00 0.00D+00 0.14D+01

3 0.42955784D+01 0.28D-02 8 1 0.10D+01 0.00D+00 0.11D-01

4 0.43011457D+01 0.34D-04 8 1 0.10D+01 0.00D+00 0.58D-04

5 0.43011576D+01 0.43D-04 13 2 0.50D+00 0.00D+00 0.49D-04

6 0.43011820D+01 0.34D-05 9 1 0.10D+01 0.00D+00 0.31D-05

7 0.43011835D+01 0.53D-06 8 1 0.10D+01 0.00D+00 0.56D-06

8 0.43011838D+01 0.28D-15 3 1 0.10D+01 0.00D+00 0.53D-15

--- Final Convergence Analysis at Best Iterate ---

Best result at iteration: ITER = 8

Objective function value: F(X) = 0.43011838D+01

Approximation of solution: X =

0.10066048D+01 -0.12688079D+00 -0.37972400D+00

Approximation of multipliers: U =

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.66070270D+00 0.00000000D+00

0.00000000D+00 0.10118733D+01 0.10637190D+01 0.00000000D+00

0.00000000D+00 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00

Constraint values: G(X) =

0.82441438D-05 0.49961983D-06 0.23264920D-05 0.86786617D-05

0.91243683D-05 0.95812657D-05 0.10049356D-04 0.33291179D-07

0.66587168D-07 0.16635954D-06 0.11098662D-06 0.16649195D-06

0.23310554D-06 0.31082979D-06 -0.55511151D-16 0.39966709D-06

0.66179110D-05 -0.11102230D-15 -0.11102230D-15 0.11096258D-07

Distance from lower bound: XL-X =

-0.10100660D+03 -0.99873119D+02 -0.99620276D+02

29

Distance from upper bound: XU-X =

0.98993395D+02 0.10012688D+03 0.10037972D+03

Number of function calls: NFUNC = 10

Number of gradient calls: NGRAD = 8

Number of calls of QP solver: NQL = 8

Active constraints: KWA =

1023 1052 1082 1022

1021 1020 1019 1059

1058 1067 1057 1056

1055 1054 10000 1053

1027 1062 1061 1060

6 Conclusions

We present a modification of an SQP algorithm to solve optimization problems with a
very large number of constraints, m, relative to the number of variables, n. The idea is to
proceed from a user-provided guess, mw, for the maximum number of violated constraints,
and to solve quadratic programming subproblems with mw linear constraints instead of
m constraints.

Some numerical experiments with simple academic test problems show that it is pos-
sible to solve problems with up to m = 2 · 108 nonlinear constraints, which would not
be solvable otherwise by a standard SQP algorithm. Sparsity of the Jacobian of the
constraints is not assumed.

The performance depends significantly on the position of the starting point, i.e., on
the question, how close the initial active set is to the active set at the final solution. If, in
the worst case, all constraints are violated at an intermediate iterate, the proposed active
set strategy is useless, as probably any other as well. In practical applications, however,
optimization problems are often routinely solved and some information about the choice
of good starting points is available. If there are no or very little changes of the active set
and if only a few constraints are active, the achievements are significant.

Is is very amazing that it possible at all to solve problems with this huge number
of constraints on a standard PC. The test examples have a quite simple structure, in
most cases arising from a semi-infinite optimization and an equidistant discretization.
It must be expected that gradients of neighbored constraints coincide up to seven digits.
These optimization problems are highly unstable in the sense that the linear independency
constraint qualification is more or less violated at all iterates.

30

References

[1] Byrd R., Gould N., Nocedal J., Waltz R. (2004): An Active-Set Algorithm for
Nonlinear Programming Using Linear Programming and Equality Constrained Sub-
problems, Mathematical Programming B, Vol. 100, 27 - 48, with R. Byrd, N. Gould
and R. Waltz, 2004

[2] Dai Y.H., Schittkowski K. (2006): A sequential quadratic programming algorithm
with non-monotone line search, Pacific Journal of Optimization, Vol. 4, 335-351

[3] Goldfarb D., Idnani A. (1983): A numerically stable method for solving strictly
convex quadratic programs, Mathematical Programming, Vol. 27, 1-33

[4] Hald J., Madsen K. (1981): Combined LP and quasi-Newton methods for minmax
optimization, Mathematical Programming, Vol. 20, 49-62

[5] Kneppe G. (1990): MBB-LAGRANGE: Structural optimization system for space
and aircraft structures, Report S-PUB-0406, MBB Hubschrauber und Flugzeuge,
Ottobrunn, Munich

[6] Lenard M. (1979): A computational study of active set strategies in nonlinear pro-
gramming with linear constraints , Mathematical Programming, Vol. 16, 81 - 97

[7] Luksan L. (1985): An implementation of recursive quadratic programming variable
metric methods for linearly constrained nonlinear minmax approximations, Kyber-
netika, Vol 21, 22-40

[8] Ortega J.M., Rheinbold W.C. (1970): Iterative Solution of Nonlinear Equations in
Several Variables, Academic Press, New York-San Francisco-London

[9] Powell M.J.D. (1978): A fast algorithm for nonlinearly constraint optimization cal-
culations, in: Numerical Analysis, G.A. Watson ed., Lecture Notes in Mathematics,
Vol. 630, Springer

[10] Schittkowski K. (1983): On the convergence of a sequential quadratic programming
method with an augmented Lagrangian search direction, Optimization, Vol. 14, 197-
216

[11] Schittkowski K. (1985/86): NLPQL: A Fortran subroutine solving constrained non-
linear programming problems, Annals of Operations Research, Vol. 5, 485-500

[12] Schittkowski K. (1987a): More Test Examples for Nonlinear Programming, Lecture
Notes in Economics and Mathematical Systems, Vol. 182, Springer

[13] Schittkowski K. (1992): Solving nonlinear programming problems with very many
constraints, Optimization, Vol. 25, 179-196

31

[14] Schittkowski K. (2002): Numerical Data Fitting in Dynamical Systems, Kluwer
Academic Publishers, Dordrecht

[15] Schittkowski K. (2003): QL: A Fortran code for convex quadratic programming -
user’s guide, Report, Department of Mathematics, University of Bayreuth, 2003

[16] Schittkowski K. (2003): DFNLP: A Fortran implementation of an SQP-Gauss-
Newton algorithm - user’s guide, Report, Department of Mathematics, University
of Bayreuth, 2003

[17] Schittkowski K. (2006): NLPQLP: A Fortran implementation of a sequential
quadratic programming algorithm with distributed and non-monotone line search
- user’s guide, version 2.2, Report, Department of Computer Science, University of
Bayreuth

[18] Tanaka Y., Fukushima M., Ibaraki T. (1988):A comparative study of several semi-
infinite nonlinear programming algorithms, European Journal of Operations Re-
search, Vol. 36, 92-100

[19] Wolfe P. (1969): Convergence conditions for ascent methods, SIAM Review, Vol.
11, 226-235

32

	Introduction
	An Active-Set Sequential Quadratic Programming Method
	Numerical Tests
	Program Documentation
	Example
	Conclusions

