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Abstract

Usually, global optimization codes with guaranteed convergence require a large
number of function evaluations. On the other hand, there are efficient optimiza-
tion methods which exploit gradient information, but only the approximation of a
local minimizer can be expected. If, however, the underlying application model is
expensive, if there are additional constraints, especially equality constraints, and
if the existence of different local solutions is expected, then heuristic rules for suc-
cessive switches from one local minimizer to another are often the only applicable
approach. For this specific situation, we present some simple ideas for cutting off a
local minimizer and to restart a new local optimization run. However, some safe-
guards are needed to stabilize the algorithm, since very little is usually known about
the distribution of local minima. The paper introduces an approach where the non-
linear programs generated can be solved by any available black box software. For our
implementation, a sequential quadratic programming code (NLPQLP) is chosen for
local optimization. The usage of the code is outlined and we present some numerical
results based on a set of test examples found in the literature.

Keywords: global optimization, deterministic methods, SQP, sequential quadratic pro-
gramming, nonlinear programming, numerical algorithm, Fortran codes, test examples
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1 Introduction

We consider the general optimization problem to minimize an objective function f under
nonlinear equality and inequality constraints,

x ∈ IRn :

min f(x)

gj(x) = 0 , j = 1, . . . , me,

gj(x) ≥ 0 , j = me + 1, . . . , m,

xl ≤ x ≤ xu ,

(1)

where x is an n-dimensional parameter vector. It is assumed that all problem functions
f(x) and gj(x), j = 1, . . ., m, are continuously differentiable on the whole IRn. But
besides of this we do not impose any further restrictions on the mathematical structure.

Let P denote the feasible domain,

P := {x ∈ IRn : gj(x) = 0, j = 1, . . . , me, gj(x) ≥ 0, j = me +1, . . . , m, xl ≤ x ≤ xu} .

Our special interest is to find a global optimizer, i.e., a feasible point x� ∈ P with
f(x�) ≤ f(x) for all x ∈ P . Without further assumptions, it is not possible to know in
advance how many local solutions exist or even whether the number of local solutions is
finite or not, or whether to global minimizer is unique.

Global optimization algorithms have been investigated in the literature extensively,
see for example the books of Pinter [19], Törn and Zilinskas [32], Horst and Pardalos [14]
and the references herein. Main solution strategies are partition techniques, stochastic
algorithms, or approximation techniques, among many other methods. Despite of signif-
icant progress and improvements in developing new computer codes, there remains the
disadvantage that the number of function evaluations is often large and unacceptable for
realistic time-consuming simulations. Especially nonlinear equality constraints are often
not appropriate and must be handled in form of penalty terms, by which direct and
random search algorithms can be deteriorated drastically.

One of the main drawbacks of global optimization is the lack of numerically computable
and generally applicable stopping criteria. Thus, global optimization is inherently a diffi-
cult problem and requires more or less an exhaustive search over the whole feasible domain
to guarantee convergence.

As soon as function evaluations become extremely expensive preventing the application
of any of the methods mentioned above, there are only two alternatives. Either the
mathematical model allows specific analysis to restrict the domain of interest to a region
where the global minimizer is expected, or one tries to improve local solutions until a
reasonable, not necessarily global solution is found. A typical technique is the so-called
tunnelling method, see Levy and Montalvo [16], where the objective function in (1) is
replaced by

f(x) =
f(x)− f(xloc)

||x− xloc||ρ

2



and where xloc ∈ P denotes a local minimizer. ρ is a penalty parameter with the intention
to push away the next local minimizer from the known one, xloc. A similar idea to move
to another local minimizer, is proposed by Ge and Qin [6], also called function filling
method, where the objective function is inverted and an exponential penalty factor added
to prevent approximation of a known local solution.

Our heuristic proposal follows a similar idea, the successive improvement of global
minima. But the algorithm is different in the following sense. Additional constraints
are attached to the original problem formulation (1). First, there is a constraint that the
next local solution must have an objective function value less than the best known feasible
function value minus a relative improvement of ε1 > 0. For each known local solution
xloc, a ball is formulated around xloc with radius ε2 to prevent a subsequent approximation
of xloc. The procedure is repeated until the solution method breaks down with an error
message from which we conclude that the feasible domain is empty. To further prevent a
return to a known local solution, an RBF kernel function of the form

ρ exp(−μ‖x− xloc‖2)

is added to the objective function for each local solution.
However, an appropriate choice of the tolerances ε1, ε2, ρ, and μ depends on the

distribution of the local solutions, scaling properties, and the curvature of the objective
function. Moreover, the nonlinear programs generated this way, become more and more
non-convex. Thus, one has to add an additional regularization to stabilize the algorithm
and appropriate starting points for each subproblem.

In Section 2, we outline the heuristic procedure in more detail. Regularization and
numerical aspects are discussed. Section 3 contains some numerical results obtained for
a set of 40 standard test problems found in the literature. The usage of the Fortran
subroutine is documented in Section 4 and Section 5 contains an illustrative example.

2 The Algorithm

We proceed from the constrained nonlinear program (1) without any information about
the number of local minima. Note that the feasible set P is compact and the objective
function f(x) is continuous on P , i.e., we know that a global solution exists.

Let x�
1, . . ., x�

k be a series of known local minima, i.e., a series of feasible points
satisfying the necessary KKT optimality conditions of (1). For computing a new iterate
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x�
k+1, the following expanded nonlinear program is formulated and solved,

x ∈ IRn :

min f(x) +
∑k

i=1 ρi exp(−μi‖x− x�
i ‖2)

gj(x) = 0 , j = 1, . . . , me,

gj(x) ≥ 0 , j = me + 1, . . . , m,

f(x) ≤ f �
k − ε1|f �

k | ,
‖x− x�

i ‖2 ≥ ε2 , i = 1, . . . , k,

xl ≤ x ≤ xu .

(2)

Here, f �
k is the best known objective function value, i.e.,

f �
k := min

i=1,...,k
f(x�

i ) , (3)

and ‖.‖ denotes the Euclidean norm. Once a local solution of (2) is found, the objective
function value is cut away and a ball around the minimizer prevents an approximation of
any of the previous iterates. In addition, a radial basis function (RBF) is added to the
objective function to push away subsequent local minimizers from the known ones. ε1 > 0
and ε2 > 0 are suitable tolerances for defining the artificial constraints, also ρi > 0 and
μi > 0 for defining the RBF kernel.

If the applied solution method for the nonlinear program (2) terminates with an error
message at a non-feasible iterate, we conclude that P is empty and stop. Otherwise, we
obtain at least a feasible point x�

k+1 with an objective function value better than all known
ones, and k is replaced by k + 1 to solve (2) again.

Obviously, we get a series of feasible iterates with decreasing objective function values.
However, the approach has a couple of severe drawbacks:

1. The choice of the tolerances ε1 and ε2 is critical for the performance and it is ex-
tremely difficult to find appropriate values in advance. Too small values prevent
the algorithm from moving away from the neighborhood of a local minimizer of the
original program (1) towards another local minimizer, and too large values could
cut off too many local minimizers, even the global one.

2. The choice of the RBF kernel parameters ρi and μi seems to be less crucial, but
must nevertheless carefully adapted to the structure on the model functions.

3. Even if the initial feasible set P is convex, the additional constraints are non-convex
and the feasible domains of (2) become more and more irregular. It is even possible
that an initial connected set P becomes non-connected.

4. The algorithm stops as soon as the constraints of (2) become inconsistent. But
infeasibility cannot be checked by any mathematical criterion. The only possibility
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Figure 1: Local and Global Minimizer

is to run an optimization algorithm until an error message occurs at an infeasible
iterate. But there is no guarantee in this case that the feasible region is in fact
non-empty.

5. The local solutions of (2) do not coincide with local solutions of (1), if some of the
artificial constraints become active.

6. It is difficult to find appropriate starting values for solving (2). Keeping the original
one provided by the user, could force the iterates to get stuck at a previous local
solution until an internal error occurs.

The situation is illustrated in Figure 2. Once a local solution x�
1 is obtained, an interval

with radius ε2 around x�
1 and a cut of the objective function subject to a relative bound

ε1 try to push away subsequent iterates from x�
1. The dotted line shows the objective

function to be minimized, including the RBF term. The new feasible domain is shrinking,
as shown by the gray area. If, however, the applied descent algorithm is started close to
x�
1, it tries to follow the slope and to reach x�

1. If ε1 and ε2 are too small and if there
are additional numerical instabilities, for example badly scaled functions or inaccurate
gradient approximation, it is possible that the code runs into an error situation despite
of its theoretical convergence properties.

To overcome at least some of these disadvantages, it is tried to regularize (2) in the
following sense. For each of the artificial inequality constraints, a slack variable is in-
troduced. Thus, we are sure that the feasible domain of the new subproblem is always
non-empty. However, we get only a perturbed solution of (2) in case of non-zero slack
variables. To reduce their size and influence as much as possible, a penalty term is added
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to the objective function, and we get the problem

x ∈ IRn, y ∈ IR, z ∈ IRk, :

min f(x) +
∑k

i=1 ρi exp(−μi‖x− x�
i ‖2) + γk(y + eT z)

gj(x) = 0 , j = 1, . . . , me,

gj(x) ≥ 0 , j = me + 1, . . . , m,

f(x) ≤ f �
k − ε1|f �

k |+ y ,

‖x− x�
i ‖2 ≥ ε2 − eTi z , i = 1, . . . , k,

xl ≤ x ≤ xu ,

0 ≤ y ≤ β1 ,

0 ≤ z ≤ β2 .

(4)

Here ei ∈ IRk denotes the i-th unit vector, i = 1, . . ., k, γk is a penalty parameter, and
β1 and β2 are upper bounds for the slack variables y and z, e = (1, . . . , 1)T . By letting
β1 = 0 or β2 = 0, the corresponding slack variables are suppressed completely.

There remains the question how to find a suitable starting point for (4) without forcing
a user to supply too much information about the optimization problem and without trying
to find some kind of pattern or decomposition of the feasible domain, where problem
functions must be evaluated. Basically, the user should have full control how to proceed,
and new starting values could be computed randomly. Another possibility is to choose

x0
k =

1

k + 1

(
x0 +

k∑
i=1

x�
i

)
(5)

where x0 ∈ IRn is the initial starting point provided by the user.
The algorithm can be summarized as follows:

Algorithm 2.1 Global Optimum of (1)
Start: Select a starting point x0 ∈ IRn and some tolerances ρ > 0, μ > 0, ε1 > 0, ε2 > 0,
ε3 > 0, β1 ≥ 0, β2 ≥ 0, γ > 0, and δ > 1. Moreover, let kmax be an upper bound for the
number of iterations.
Initialization: Solve (1) by a locally convergent optimization algorithm to get a local mini-
mizer x�

1. Let γ1 := γ, ρ1 = ρ, and μ1 = μ.
Iteration Cycle: For k = 1, 2,, . . . compute x�

k+1 from x�
1, . . ., x

�
k as follows:

1. Determine f �
k by (3).

2. Formulate the expanded nonlinear program (4) with slack variables y ∈ IR and z ∈
IRk.

3. Solve (4) by an available locally convergent algorithm for smooth, constrained non-
linear programming starting from x0

k ∈ IRn, for example given by (5), y = 0, and
z = 0. Let xk+1, yk+1, and zk+1 be the optimal solution.
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4. If yk + eT zk > ε3, let γk+1 = δγk, ρk+1 = δρk, and μk+1 = δμk. Otherwise, let
γk+1 = γk, ρk+1 = ρk, and μk+1 = μk.

5. Let k := k + 1. If the maximum number of iterations is reached, i.e., if k = kmax,
then stop.

6. Repeat the iteration, if the local optimization code reports that all internal conver-
gence criteria are satisfied.

7. Stop otherwise. The last successful return is supposed to be the global minimizer.

Another tolerance ε3 is introduced to adopt the penalty parameter γk and to force the
artificial variables y and z to become as small as possible. Usually we set ε3 = ε1.

The algorithm is a heuristic one without guaranteed convergence. However, there
are many situations preventing the application of a more rigorous method, for exam-
ple based on a partition technique, stochastic optimization, approximations, or a direct
search method. The main disadvantage of these algorithms is the large number of function
evaluations, often not acceptable for realistic time-consuming simulation programs. Es-
pecially nonlinear equality constraints are often not appropriate and must be handled in
form of penalty terms, by which direct and random search algorithms can be deteriorated
drastically. To summarize, the approach seems to be applicable under the subsequent
conditions:

• The evaluation of the model functions f(x) and gj(x), j = 1, . . ., m is expensive.

• There are highly nonlinear restrictions, especially equality constraints.

• Model functions are continuously differentiable and the numerical noise in function
and gradient evaluations is negligible.

• The number of local minima of (1) is not too large.

• There is some empirical, model-based knowledge about the expected relative loca-
tions of local minima and the curvature of the objective function.

3 Numerical Tests

The Fortran code for the heuristic global optimization methodology as outlined by Al-
gorithm 2.1 is called NLPQLG. The nonlinear programming subprograms are solved by
NLPQLP, version 2.2, an implementation of a sequential quadratic programming (SQP)
algorithm, see Schittkowski [29]. The mathematical algorithm is described in Powell [21]
and Schittkowski [23, 27] in more detail. NLPQLP is executed in reverse communica-
tion, where function and gradient values must be provided outside of the main subroutine
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depending on a flag. The only parameters that influence the performance of NLPQLP
and that must be set by the user, are the maximum number of iterations (MAXIT) and
the termination accuracy (ACC). In our case, we use MAXIT=500 and ACC=10−6 for
all test runs. The remaining parameters for calling NLPQLG, see also the general model
structure (4), are

first RBF kernel parameter (height): ρ = 100
second RBF kernel parameter (deviation): μ = 106

bound for cutting functions values: ε1 = 0.1
bound for cutting known minimizers: ε2 = 0.0001
percentage of cutting local minima: β1 = 1010

upper bound for slack variable x: β2 = 0
penalty term for additional variables: γ = 10
factor for increasing penalty term: δ = 10

Here we use a small tolerance ε2 for staying away from known local minimizers without
regularization. The numerical tests are based on a collection of 58 test problems, all of
them listed in Section 3 in full detail. A summary is presented in Table 3, where the
following data are displayed:

no - test problem number,
name - name of the test problem,
reference - citation of literature,
n - number of variables,
m - number of constraints,
me - number of equality constraints,
nloc - number of known local solutions,
f � - best known objective function value,

If nloc = 0, the number of local solutions is not known. The first eight examples are
from two collections of nonlinear programming test problems for gradient-based locally
convergent methods, see Hock and Schittkowski [13] and Schittkowski [25]. But in these
cases, the applied nonlinear programming code NLPQLP stopped at a local solution, and
we are interested in the question, whether a global minimizer can be obtained or not. The
numerical results of NLPQLP for all 306 test problems are published in Schittkowski [28].

Usually, global optimization algorithms do not depend on a single starting point as
is the case for local methods. Thus, most test problems found in the literature do not
contain any information from where a successive local search code could be started. Sec-
tion 3 contains the test problems together with our more or less arbitrarily chosen initial
guesses. To avoid approximation of the global minimizer in the first step by solving the
non-perturbed problem, they are chosen sufficiently far away from the global optimum.
Subsequently, new starting points are selected randomly between the given upper and
lower bounds.

Since the Branin-problem has four local minimizers with same function values, the
initial search step leads to a global solution. Only in case of problems Pinter 1 and
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no name reference n m me nloc f�

1 TP16 Hock, Schittkowski [13] 2 2 0 0 0.250
2 TP33 Hock, Schittkowski [13] 3 2 0 0 -4.586
3 TP54 Hock, Schittkowski [13] 6 1 1 0 -0.908
4 TP55 Hock, Schittkowski [13] 6 6 6 0 6.333
5 TP59 Hock, Schittkowski [13] 2 3 0 0 -7.804
6 TP202 Schittkowski [25] 2 0 0 0 1.000
7 TP220 Schittkowski [25] 2 1 1 0 1.000
8 TP265 Schittkowski [25] 4 2 2 0 0.975
9 Rastrigin Rastrigin [22], Törn, Zilinskas [32] 2 0 0 50 -2.000

10 Adjiman Adjiman et al. [1], Floudas et al. [5] 2 0 0 3 -2.022
11 Six-Hump Camel Branin [2], Törn, Zilinskas [32] 2 0 0 6 -1.032
12 Murtagh, Saunders Murtagh, Saunders [18], Floudas et al. [5] 5 3 3 5 0.029
13 Branin Branin, Hoo [3], Törn, Zilinskas [32] 2 0 0 3 0.398
14 Goldstein, Price Goldstein, Price [7], Floudas et al. [5] 2 0 0 4 3.000
15 Shekel 2 Dixon, Szegö [4], Törn, Zilinskas [32] 4 0 0 0 -
16 Shekel 5 Dixon, Szegö [4], Törn, Zilinskas [32] 4 0 0 0 -
17 Shekel 7 Dixon, Szegö [4], Törn, Zilinskas [32] 4 0 0 0 -
18 Shekel 10 Dixon, Szegö [4], Törn, Zilinskas [32] 4 0 0 0 -
19 Griewank 2 Griewank [9], Törn, Zilinskas [32] 2 0 0 > 500 1.000
20 Griewank 10 Griewank [9], Törn, Zilinskas [32] 10 0 0 > 1000 1.000
21 Pinter 1 Pinter [19] 50 0 0 0 1.000
22 Pinter 2 Pinter [19] 50 0 0 0 1.000
23 Pinter 3 Pinter [20] 5 4 2 0 1.000
24 Sinus 2 1 1 0 -10.000
25 Hesse Hesse [11], Törn, Zilinskas [32] 6 6 0 18 -310.000
26 Polynomial Wang, Dong, Aitchison [34] 2 0 0 ≥ 5 0.000
27 Hartman 3 Hartman [10], Törn, Zilinskas [32] 3 0 0 ≥ 3 -3.860
28 Hartman 6 Hartman [10], Törn, Zilinskas [32] 6 0 0 ≥ 3 -3.320
29 Equations Pinter [19] 3 0 0 0 1.000
30 Strongin Strongin [31], Törn, Zilinskas [32] 2 0 0 0 1.000
31 x sin(x) 2 0 0 0 -18.000
32 Trefethen Trefethen [33] 2 0 0 >1000 -3.307
33 Gomez 2 Gomez, Levy [8] 2 1 0 0 1.000
34 Gomez 3 Gomez, Levy [8] 2 1 0 0 -0.971
35 Floudas, Pardalos 9 Floudas et al. [5] 2 2 0 0 -5.508
36 Ackley Path 2 Storn, Price [30] 2 0 0 0 1.0
37 Easom Michalewicz [17] 2 0 0 0 -1.0
38 2D Sinus 2 0 0 0 1.0
39 Zabinsky Zabinsky et al. [35] 10 0 0 >1000 -3.5
40 Ackley Path 10 Storn, Price [30] 10 0 0 0 1.0
41 Pinter constrained 1 Pinter [20] 2 3 0 0 1.0
42 Pinter constrained 2 Pinter [20] 2 4 0 0 1.0
43 Pinter constrained 3 Pinter [20] 2 0 0 0 1.0
44 Pinter constrained 4 Pinter [20] 2 0 0 0 1.0
45 Pinter constrained 5 Pinter [20] 2 0 0 0 1.0
46 Largest small polygon 40 211 2 0 1.0
47 Electrons in sphere 150 50 50 0 1.0
48 Haverly Pooling problem 9 6 4 0 -600.0
49 Rastrigin 20 Rastrigin [22], Törn, Zilinskas [32] 20 0 0 0 1.0
50 Rastrigin 50 Rastrigin [22], Törn, Zilinskas [32] 50 0 0 0 1.0
51 scaled Rastrigin 20 Rastrigin [22], Törn, Zilinskas [32] 20 0 0 0 1.0
52 scaled Rastrigin 50 Rastrigin [22], Törn, Zilinskas [32] 50 0 0 0 1.0
53 Levy 20 Gomez, Levy [8] 20 0 0 0 1.0
54 Levy 50 Gomez, Levy [8] 50 0 0 0 1.0
55 Ackley Path 20 Storn, Price [30] 20 0 0 0 -23.
56 Ackley Path 50 Storn, Price [30] 50 0 0 0 -23.
57 Schwefel 5 5 0 0 0 -418.983 n
58 Schwefel 10 10 0 0 0 -418.983 n

Table 1: Test Problems: Dimensioning Parameters and Tolerances
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Pinter 2, we were unable to find initial values not leading the local search directly to the
global minimizer. In case of zero global objective function value, we added the constant
1.0 to f(x) to avoid irregularities, see Algorithm 2.1.

Since analytical derivatives are not available for all problems, we approximate them
numerically by a fourth-order difference formula,

∂

∂xi
f(x) ≈ 1

4!ηi

(
2f(x− 2ηiei)− 16f(x− ηiei) + 16f(x+ ηiei)− 2f(x+ 2ηiei)

)
(6)

where ηi = ηmax(η, |xi|), η = 10−6, ei the i-th unit vector, and i = 1, . . . , n. In the same
way, derivatives of constraints are computed.

For most test examples, the exact global solution is known in advance. For the Shekel-
problems, only approximations of the global solution, xi = 1/ci, i = 1, . . ., n, are known.
Global solutions for the first eight problems from the standard test problem collections
are the best known local solutions, see Schittkowski [28] for details.

The numerical results are summarized in Table 3. We report the test problem num-
ber, the index j of the local search cycle where the best feasible solution is found, the
total number of local searches, nit, i.e., of calls of NLPQLP, and the total number of
function and gradient evaluations, nf and ng, respectively. To give an impression on the
improvements from starting point over the first local solution, also the objective function
values f(x0), f(x

�
1), f(x

�
j ), and f(x�) are listed, where x0 is the starting point, x�

1 the first
local solution, x�

j the best feasible solution obtained, and x� the known or guessed global
solution, respectively. Note that the starting point x0 is infeasible in some situations.

In most cases, the global minimal value is approximated subject to an acceptable
error εg as shown in the second last column of Table 3. However, flat objective function
areas or a large number of local solutions can prevent the computation of the exact global
minimizer by our approach, at least when proceeding from the parameters given. Thus,
we present also the percentage by which a global solution is approximated relative to the
first local minimizer found, called pr.

In case of problems 4, 22, and 23, the algorithm stopped at the first local minimizer
found. Further improvements are not possible, probably because of a too big ε1. For
example 7, an improvement of the first local minimizer found is not possible. The problem
is irregular, i.e., the constraint qualification is not satisfied at the optimal solution. For
problems 9, 19, 20, and 34, the known minimum value is not found, but we observe a
significant improvement of the first local minimizer. In case of problem 32, there are more
than 667 local minima only in the subarea between -1 and 1. The first local minimizer is
improved by more than 50 percent. For problems 16, 17, and 18, the exact local minimal
values are not known. It is not possible to solve problem 31.

The Fortran codes are compiled by the Intel Visual Fortran Compiler, Version 9.1,
under Windows XP, and executed on a Pentium IV processor with 2.8 GHz..
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To summarize, we evaluate the percentage of successful test runs psucc subject to
a relative tolerance of 0.01 by which the known global solution is approximated, the
percentage of test runs where the global solution is at least approximated within 5 %
compared to the first local solution, pimp, the average number of subproblems (4) solved
until the global minimizer is found, nglob, the average number of subproblems solved, ntot,
the average number of function calls, nf , and the average number of gradients calls, ng,

psucc = 72.5 %
pimp = 94.8 %
nglob = 4.8
ntot = 8.0
nf = 776
ng = 333

4 Program Documentation

NLPQLG is implemented in form of a Fortran subroutine, where the nonlinear program-
ming subproblem is solved by NLPQLP, see Schittkowski [29]. Model functions and
gradients are provided by reverse communication according to the following rules:

1. Choose starting values for the variables to be found, and store them in X.

2. Compute objective and all constraint function values, store them in F and G, re-
spectively.

3. Compute gradients of objective function and all constraints, and store them in
DF and DG, respectively. The J-th row of DG contains the gradient of the J-th
constraint, J=1,...,M.

4. Set IFAIL=0 and execute NLPQLG.

5. If NLPQLG returns with IFAIL=-1, compute objective function and constraint val-
ues for variable values found in X, store them in F and G, and call NLPQLG again.

6. If NLPQLG terminates with IFAIL=-2, compute gradient values with respect to the
variables stored in X, and store them in DF and DG. Then call NLPQLG again.

7. If NLPQLG terminates with IFAIL=-3, compute new starting values and corre-
sponding objective function values, constraint function values, and all gradients
of these function, and store them in F, G, DF, and DG, respectively. Then call
NLPQLG again.

8. If NLPQLG terminates with IFAIL>0, we are done. An improved local minimized
is hopefully found in a previous iteration.
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Note that the iteration cycle of Algorithm 2.1 is only stopped if either the maximum
number of outer iterations, LMAX, is reached, or if the internal execution of NLPQLP
is interrupted caused by an error situation. In this case, it is supposed that the feasible
domain became inconsistent. Thus, NLPQLG will always stop with an error message,
usually the termination reason of the last execution of NLPQLP.

If NLPQLG is called with LMAX=1, the execution is exactly the same as when calling
the nonlinear programming routine NLPQLP only once.

Usage:

CALL NLPQLG ( M, ME, MMAX, N, NMAX,
/ L, LMAX, MNNMAX, X0, X,
/ XS, F, FINIT, FS, G,
/ GS, JS, DF, DG, U,
/ XL, XU, C, D, ACC,
/ ACCQP, EPS1, EPS2, BND1, BND2,
/ ALAMB, RHO, AMUE, ALFAC, SCBOU,
/ MAXFUN, MAXIT, IPRINT, IOUT, IFAIL,
/ WA, LWA, KWA, LKWA, ACTIVE,
/ LACTIV )

Definition of the parameters:

M : Number of constraints.
ME : Number of equality constraints.

MMAX : Row dimension of array DG containing Jacobian of con-
straints. MMAX must be at least one and greater or equal to
M+LMAX+1.

N : Number of optimization variables.

NMAX : Row dimension of C. NMAX must be at least two and greater
than N+LMAX+1.

L : On return, L shows the number of local minima found.

LMAX : Maximum number of expected local minima. LMAX must be at
least 1. In this case, the first local minimizer is searched.
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MNNMAX : Dimensioning parameter, must be at least
MMAX+NMAX+NMAX.

X0(N) : When calling NLPQLG, X0 has to contain starting values for
the first call of the SQP algorithm.

X(NMAX) : On return, X contains the best local solution obtained. In the
driving program, the row dimension of X must be NMAX.

XS(NMAX,LMAX) : On return, XS contains L local minimizers found. In the driving
program the row dimension of XS must be equal to NMAX.

F : On return, F contains the objective function value of the best
local minimizer including penalty term for artificial variables.

FINIT : On return, FINIT stores the first local minimizer of the unper-
turbed problem.

FS(LMAX) : On return, FS contains L objective function values of the local
minima stored in XS.

G(MMAX) : On return, G contains the constraint function values at the best
local solution expanded by artificial constraints. In the driving
program, the dimension of G must be equal to MMAX.

GS(MMAX,LMAX) : On return, GS contains the constraint values of all L local miniz-
ers found. In the driving program, the row dimension of GS must
be equal to MMAX.

JS : On return, JS contains the index of the best solution in XS, FS
and GS, respectively.

DF(NMAX) : DF is a working array for the current gradient of the objective
function of the expanded problem.

DG(MMAX,NMAX) : DG is a working array for gradients of constraints. In the driving
program the row dimension of DG has to be equal to MMAX.

U(MNNMAX) : U is a working array for multipliers. The first M locations contain
the multipliers of the M nonlinear constraints.

XL(NMAX), On input, the one-dimensional arrays XL and XU must contain
the

XU(NMAX) : upper and lower bounds of the variables.

C(NMAX,NMAX) : C is a working array for the BFGS approximation of the Hessian
matrix of the Lagrangian function stored in form of an LDL
decomposition. C contains the lower triangular factor of an LDL
factorization of the final quasi-Newton matrix (without diagonal
elements, which are always one). In the driving program, the
row dimension of C has to be equal to NMAX.
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D(NMAX) : The elements of the diagonal matrix of the LDL decomposition
of the quasi-Newton matrix are stored in the one-dimensional
array D.

ACC : The user has to specify the desired final accuracy (e.g. 1.0D-
7). The termination accuracy should not be smaller than the
accuracy by which gradients are computed.

ACCQP : The tolerance is needed for the QP solver to perform several
tests, for example whether optimality conditions are satisfied or
whether a number is considered as zero or not. If ACCQP is
less or equal to zero, then the machine precision is computed
internally and subsequently multiplied by 10.0.

EPS1 : Relative improvement of local minimizer subject to the best
value found in the previous iterates, needed for definition of
one additional constraint. EPS1 must be greater than zero (e.g.
0.01).

EPS2 : Absolute distance bound for preventing approximation of a
known local minimizer. EPS2 must be greater than zero (e.g.
0.1).

BND1 : Upper bound for artificial variable X(N+1) for relative improve-
ment of local minimizer subject to the best value known. BND1
must not be smaller than zero.

BND2 : Upper bound for artificial variables X(N+1+I), I=1,...,K-1, for
distances from known local minimizers. BND2 must not be
smaller than zero.

ALAMB : Common penalty parameter to keep the additionally introduced
variables X(N+1),...,X(N+K) as small as possible. ALAMB
must be positive (e.g. 100.0).

RHO : RBF parameter, height or penalty coefficient, respectively.

AMUE : RBF parameter, standard distribution.

ALFAC : Factor greater than one to increase ALAMB in case of any pos-
itive artificial variables (e.g. 10.0).

SCBOU : Allows automatic scaling of all problem functions at the starting
point X0. If a function value is greater than SCBOU, function
values are divided by their square root (e.g. 1.0).
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MAXFUN : The integer variable defines an upper bound for the number of
function calls during the line search (e.g. 20).

MAXIT : Maximum number of iterations for each subproblem, where
one iteration corresponds to one formulation and solution of a
quadratic programming subproblem, or, alternatively, one eval-
uation of gradients (e.g. 100).

IPRINT : Specification of the desired output level.

0 - no output of the program

1 - only a final summary of local solutions

2 - final convergence analysis for each subproblem

3 - one line of intermediate results per iteration

4 - more detailed information per iteration

IOUT : Integer indicating the desired output unit number, i.e., all write-
statements start with ’WRITE(IOUT,... ’ in case of IPRINT>0.

IFAIL : The parameter shows the reason for terminating the last iter-
ation cycle. Initially, IFAIL must be set to zero. On return,
IFAIL indicates the termination reason, greater than zero in case
of stopping by an error, or less than zero to perform reverse com-
munication as outlined above. In case of IFAIL=0, an optimal
solution of one of the auxiliary problems was obtained. The
following error messages are possible:

< 0 - reverse communication, see above

0 - successful termination
1 - stop after MAXIT iterations

2 - uphill search direction

3 - underflow when computing new BFGS-update matrix

4 - line search exceeded MAXFUN iterations
5 - length of a working array too short

6 - false dimensions, M>MMAX, N≥NMAX, or

MNN2 �=M+N+N+2

7 - search direction close to zero at infeasible iterate
8 - starting point violates lower or upper bound

9 - wrong input parameter, e.g., MODE, IPRINT, IOUT
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10 - inconsistency in QP, division by zero

>100 - error message of QP solver

WA(LWA) : WA is a real working array of length LWA.

LWA: Length of WA, should be at least 3*NMAX*NMAX/2 +
11*MMAX + 33*NMAX + 2*LMAX + 200.

KWA(LKWA): The user has to provide working space for an integer array of
length LKWA.

LKWA : Length of KWA, should be at least NMAX + 30.

ACTIVE(LACTIV) : The logical array shows a user the constraints, which NLPQLP
considers to be active at the last computed iterate, i.e. G(J,X)
is active, if and only if ACTIVE(J)=.TRUE., J=1,...,M.

LACTIV : Length of ACTIVE, should be at least 2*MMAX + 10.

5 An Illustrative Example

To give an example how to organize the code, we consider the Murtagh, Saunders [18]
problem,

x1, ..., x5 ∈ IR :

min (x1 − 1)2 + (x1 − x2)
2 + (x2 − x3)

3 + (x3 − x4)
4 + (x4 − x5)

4

x1 + x2
2 + x3

3 − 3
√
2− 2 = 0 ,

x2 − x2
3 + x4 − 2

√
2 + 2 = 0 ,

−5 ≤ xi ≤ 5, i = 1, ..., 5

(7)

The Fortran source code for executing NLPQLG is listed below. New starting values
are selected randomly.

IMPLICIT NONE

INTEGER NMX, MMX, LMAX, NMAX, MMAX, MNNMAX, LWA, LKWA,

/ LACTIV

PARAMETER (NMX = 6, MMX = 3, LMAX = 5)

PARAMETER (NMAX = NMX + LMAX + 1,

/ MMAX = MMX + LMAX + 1,

/ MNNMAX = MMAX + NMAX + NMAX + 2,

/ LWA = 3*NMAX*NMAX/2 + 33*NMAX + 11*MMAX

/ + 2*LMAX + 200,

/ LKWA = NMAX + 30,

/ LACTIV = 2*MMAX + 10)

DOUBLE PRECISION X(NMAX),X0(NMAX),XS(NMAX,LMAX),G(MMAX),DF(NMAX),

/ DG(MMAX,NMAX),U(MNNMAX),FS(LMAX),GS(MMAX,LMAX),

/ XL(NMAX),XU(NMAX),C(NMAX,NMAX),D(NMAX),

/ WA(LWA),KWA(LKWA), ACC, ACCQP, EPS1, EPS2,
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/ ALFAC, BND1, BND2, ALAMB, RHO, AMUE, SCBOU,

/ F, FINIT, RN

INTEGER M, ME, N, I, IOUT, MAXIT, MAXFUN, IPRINT,

/ IFAIL, L, JS

LOGICAL ACTIVE(LACTIV)

C

C Problem parameters:

C

N = 5

M = 3

ME = 3

DO I = 1,N

X0(I) = -5.0D0

X(I) = X0(I)

XL(I) = -5.0D0

XU(I) = 5.0D0

ENDDO

C

C Tolerances for calling NLPQLG

C

IOUT = 6

ACC = 1.0D-10

ACCQP = 1.0D-14

EPS1 = 0.1D0

EPS2 = 0.1D0

ALFAC = 1.0D+1

BND1 = 1.0D+10

BND2 = 1.0D+10

ALAMB = 1.0D+1

SCBOU = 1.0D+0

RHO = 1.0D-6

AMUE = 1.0D+3

MAXIT = 500

MAXFUN = 25

IPRINT = 3

C

C Execute NLPQLG in reverse communication

C

IFAIL = 0

10 CONTINUE

C

IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-1).OR.(IFAIL.EQ.-3)) THEN

F = (X(1)-1.0D0)**2 + (X(1)-X(2))**2 + (X(2)-X(3))**3

/ + (X(3)-X(4))**4 + (X(4)-X(5))**4
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G(1) = X(1) + X(2)**2 + X(3)**3 - 3.0D0*DSQRT(2.0D0) - 2.0D0

G(2) = X(2) - X(3)**2 + X(4) - 2.0D0*DSQRT(2.0D0) + 2.0D0

G(3) = X(1)*X(5) - 2.0D0

ENDIF

C

IF ((IFAIL.EQ.0).OR.(IFAIL.EQ.-2).OR.(IFAIL.EQ.-3)) THEN

DF(1) = 2.0D0*(X(1)-1.0D0) + 2.0D0*(X(1)-X(2))

DF(2) = -2.0D0*(X(1)-X(2)) + 3.0D0*(X(2)-X(3))**2

DF(3) = -3.0D0*(X(2)-X(3))**2 + 4.0D0*(X(3)-X(4))**3

DF(4) = -4.0D0*(X(3)-X(4))**3 + 4.0D0*(X(4)-X(5))**3

DF(5) = -4.0D0*(X(4)-X(5))**3

DG(1,1) = 1.0D0

DG(1,2) = 2.0D0*X(2)

DG(1,3) = 3.0D0*X(3)**2

DG(1,4) = 0.0D0

DG(1,5) = 0.0D0

DG(2,1) = 0.0D0

DG(2,2) = 1.0D0

DG(2,3) = -2.0D0*X(3)

DG(2,4) = 1.0D0

DG(2,5) = 0.0D0

DG(3,1) = X(5)

DG(3,2) = 0.0D0

DG(3,3) = 0.0D0

DG(3,4) = 0.0D0

DG(3,5) = X(1)

ENDIF

C

CALL NLPQLG ( M, ME, MMAX, N, NMAX,

/ L, LMAX, MNNMAX, X0, X,

/ XS, F, FINIT, FS, G,

/ GS, JS, DF, DG, U,

/ XL, XU, C, D, ACC,

/ ACCQP, EPS1, EPS2, BND1, BND2,

/ ALAMB, RHO, AMUE, ALFAC, SCBOU,

/ MAXFUN, MAXIT, IPRINT, IOUT, IFAIL,

/ WA, LWA, KWA, LKWA, ACTIVE,

/ LACTIV)

C

IF (IFAIL.EQ.-3) THEN

DO I = 1,N

CALL RANDOM_NUMBER(RN)

X(I) = XL(I) + RN*(XU(I) - XL(I))

ENDDO
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ENDIF

IF (IFAIL.LT.0) GOTO 10

C

STOP ’DEMO_G’

END

After five calls of NLPQLP, the global minimizer is reached. The following output
should appear on screen:

--------------------------------------------------------------------

START OF THE GLOBALIZED SQP ALGORITHM

--------------------------------------------------------------------

Parameters:

ACC = 0.10D-09

ACCQP = 0.10D-13

EPS1 = 0.10D+00

EPS2 = 0.10D+00

BND1 = 0.10D+11

BND2 = 0.10D+11

ALAMB = 0.10D+02

RHO = 0.10D-05

AMUE = 0.10D+04

ALFAC = 0.10D+02

SCBOU = 0.10D+01

MAXFUN = 25

MAXIT = 500

IPRINT = 1

--- Summary of Local Solutions ---

Local solution ... 1

Function value: F(X) = 0.44022072D+02

Variable: X =

-0.70339280D+00 0.26357026D+01 -0.96361667D-01 -0.17979899D+01

-0.28433615D+01

Local solution ... 2

Function value: F(X) = 0.60703552D+03

Variable: X =

-0.27908708D+01 -0.30041386D+01 0.20537568D+00 0.38747449D+01

-0.71662222D+00 0.00000000D+00 0.00000000D+00
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Local solution ... 3

Function value: F(X) = 0.29310831D-01

Variable: X =

0.11166347D+01 0.12204407D+01 0.15377854D+01 0.19727704D+01

0.17910961D+01 0.00000000D+00 0.00000000D+00 0.00000000D+00

Local solution ... 4

Function value: F(X) = 0.52902580D+02

Variable: X =

0.72800348D+00 -0.22452109D+01 0.77951383D+00 0.36812798D+01

0.27472396D+01 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.70907396D-35

Local solution ... 5

Function value: F(X) = 0.44246295D+02

Variable: X =

-0.71101432D+00 0.26383655D+01 -0.19414179D+00 -0.17722473D+01

-0.28128829D+01 0.00000000D+00 0.00000000D+00 0.00000000D+00

0.00000000D+00 0.00000000D+00

Best solution at J = 3 out of L = 5 local solutions:

Termination reason: IFAIL = 0

Number of function calls: NFUNC = 115

Number of gradient calls: NGRAD = 100

First local solution: F(X1) = 0.44022072D+02

Best function value: F(X) = 0.29310831D-01

Sum of artificial variables: FEAS = 0.00000000D+00

Sum of constraint violations: GVIOL = 0.21337847D-08

Final penalty parameter: ALAMB = 0.10000000D+02

RBF parameter, height: RHO = 0.10000000D-05

RBF parameter, deviation: AMUE = 0.10000000D+04

Variable values: X =

0.11166347D+01 0.12204407D+01 0.15377854D+01 0.19727704D+01

0.17910961D+01

Constraint values: G(X) =

0.18692958D-09 -0.37589043D-10 -0.19092661D-08
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6 Summary

We present a heuristic approach for stepwise approximation of the global solution of
a constrained nonlinear programming problem. In each step, additional variables and
constraints are added to the original ones, to cut off known local solutions. The idea
is implemented and the resulting code NLPQLG is able to solve a large number of test
problems found in the literature. However, the algorithm is quite sensitive subject to the
input tolerances, which must be chosen very carefully. But under certain circumstances,
for example very time-consuming function evaluations or highly nonlinear constraints, the
proposed idea is often the only way to improve a known local solution.
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