
A Sequential Quadratic Programming Algorithm with

Non-Monotone Line Search

Yu-Hong Dai

State Key Laboratory of Scientific and Engineering Computing
Institute of Computational Mathematics and Scientific/Engineering Computing
Academy of Mathematics and Systems Science, Chinese Academy of Sciences

P. O. Box 2719, Beijing 100080, P. R. China
Email: dyh@lsec.cc.ac.cn

Klaus Schittkowski

Department of Computer Science, University of Bayreuth
D - 95440 Bayreuth, Germany.

Email: klaus.schittkowski@uni-bayreuth.de

Abstract
Today, many practical smooth nonlinear programming problems are rou-

tinely solved by sequential quadratic programming (SQP) methods stabilized
by a monotone line search procedure subject to a suitable merit function. In
case of computational errors as for example caused by inaccurate function or
gradient evaluations, however, the approach is unstable and often terminates
with an error message. To reduce the number of false terminations, a non-
monotone line search is proposed which allows the acceptance of a step length
even with an increased merit function value. Thus, the subsequent step may
become larger than in case of a monotone line search and the whole iteration
process is stabilized. Convergence of the new SQP algorithm is proved as-
suming exact arithmetic, and numerical results are included. As expected, no
significant improvements are observed if function values are computed within
machine accuracy. To model more realistic and more difficult situations, we
add randomly generated errors to function values and show that despite of in-
creased noise a drastic improvement of the performance is achieved compared
to monotone line search. This situation is very typical for complex simula-
tion programs producing inaccurate function values and where, even worse,
derivatives are nevertheless computed by forward differences.

Keywords: SQP, sequential quadratic programming, nonlinear programming, non-
monotone line search, merit function, convergence, numerical results

1

1 Introduction

We consider the smooth constrained optimization problem to minimize an objective
function f under nonlinear equality and inequality constraints,

minimize f(x)
x ∈ IRn : gj(x) = 0 , j = 1, . . . , me,

gj(x) ≥ 0 , j = me + 1, . . . , m,
(1)

where x is an n-dimensional parameter vector. It is assumed that all problem
functions f(x) and gj(x), j = 1, . . ., m, are continuously differentiable on the IRn.
Without loss of generality, bound constraints of the form xl ≤ x ≤ xu are dropped
to simplify the notation.

Sequential quadratic programming became the standard general purpose method
to solve smooth nonlinear optimization problems during the last 25 years, at least
if the nonlinear program does not possess any special mathematical structure, for
example a least squares objective function, large number of variables with sparsity
patterns in derivatives, etc.

However, SQP methods are quite sensitive subject to round-off or approximation
errors in function and especially gradient values. If objective or constraint functions
cannot be computed within machine accuracy or if the accuracy by which gradients
are approximated is above the termination tolerance, an SQP code often breaks
down with an error message. In this situation, the line search cannot be terminated
within a given number of iterations and the algorithm stops.

The new approach makes use of non-monotone line search. The basic idea is to
replace the reference value φk(0) of a line search termination criterion

φk(αk) ≤ φk(0) + µαkφ
′
k(0) ,

where φk(α) is a suitable merit function with φ′k(0) < 0 at the k-th iterate and µ > 0
a tolerance, by max{φj(0) : j = max(0, k − L), . . . , k}. Thus, we accept larger
stepsizes and are able to overcome situations where the quadratic programming
subproblem yields insufficient search directions because of inaccurate gradients. If,
however, the queue length L is set to 0, we get back the original SQP method with
monotone line search.

The proposal is not new and for example described in Dai [5], where a general
convergence proof for the unconstrained case is presented. The general idea goes
back to Grippo, Lampariello, and Lucidi [11], and was extended to constrained
optimization and trust region methods in a series of subsequent papers, see Bonnans
et al. [2], Deng et al. [6], Grippo et al. [12, 13], Ke and Han [16], Ke et al. [17], Panier
and Tits [19], Raydan [23], and Toint [33, 34]. But there is a basic difference in the
methodology: Our numerical results indicate that it is preferable to allow monotone
line searches as long as they terminate successfully, and to apply a non-monotone
one only in an error situation.

2

It is important to note that there exists an alternative technique to stabilize an
SQP-based nonlinear programming algorithm and to establish global convergence
results, the trust region method. The basic idea is to compute a new iterate xk+1 by
a second order model or any close approximation, where the step size is restricted
by a trust region radius. Subsequently, the ratio of the actual and the predicted
improvement subject to a merit function is computed. The trust region radius is
either enlarged or decreased depending on the deviation from the ideal value one.
A comprehensive review on trust region methods is given by Conn, Gould, and
Toint [4]. Fletcher [9] introduced a second order correction, for which superlinear
convergence can be shown, see also Yuan [35]. Numerical comparisons of Exler and
Schittkowski [8] show that the efficiency in terms of number of function and gradient
evaluations is comparable to an SQP method with line search.

It is not assumed that information about statistical properties of possible noise
is available. Thus, we proceed from the standard version of an SQP algorithm and
consider only the question, what happens if we apply this one to inaccurate function
and gradient evaluations. On the other hand, there are proposals to exploit existing
information and to modify an SQP method accordingly, see e.g. Hintermüller [15].

Numerical tests are included to test different line search variants. However, there
are nearly no differences of the overall performance in case of providing function and
especially gradient values within machine accuracy. The main reason is that the
step length one satisfies the termination criterion of a line search algorithm in most
steps, especially when approaching a solution, see Schittkowski [26] for a theoretical
justification.

Thus, the purpose of the theoretical and numerical investigations of this pa-
per is to show that non-monotone line search is more robust under side conditions
which are often satisfied in practical situations. If function values are inaccurate
and if in addition derivatives are approximated by a difference formula, standard
monotone line search leads to an irregular termination in many situations, where a
non-monotone one terminates successfully because of accepting larger steps.

In Section 2, we outline the general mathematical structure of an SQP algorithm,
especially the quadratic programming subproblem, the used merit function, and the
corresponding choice of penalty parameters. The non-monotone line search and the
new SQP algorithm are discussed in Section 3. Convergence is proved in Section 4
following the analysis in Schittkowski [26] for the monotone case. Section 5 contains
some numerical results obtained for a set of more than 300 standard test problems
of the collections published in Hock and Schittkowski [14] and in Schittkowski [27].
They show the stability of the new algorithm with respect to the influence of noise
in function evaluations. Conclusions and some discussions about monotone and
non-monotone are made at the last section.

3

2 The Quadratic Programming Subproblem and

the Augmented Lagrangian Merit Function

Sequential quadratic programming or SQP methods belong to the most powerful
nonlinear programming algorithms we know today for solving differentiable nonlin-
ear programming problems of the form (1). The theoretical background is described
e.g. in Stoer [32] in form of a review or in Spellucci [31] in form of an extensive
text book. From the more practical point of view, SQP methods are also intro-
duced in the books of Papalambros, Wilde [20] and Edgar, Himmelblau [7]. Their
excellent numerical performance was tested and compared with other methods in
Schittkowski [25], and since many years they belong to the most frequently used
algorithms to solve practical optimization problems.

The basic idea is to formulate and solve a quadratic programming subproblem
in each iteration which is obtained by linearizing the constraints and approximating
the Lagrangian function

L(x, u)
.
= f(x)− uT g(x) (2)

quadratically, where x ∈ IRn is the primal variable, u ∈ IRm the dual variable,
i.e., the multiplier vector, and where g(x) = (g1(x), . . . , gm(x))T . Assume that
xk ∈ IRn is an actual approximation of the solution, vk ∈ IRm an approximation of
the multipliers, and Bk ∈ IRn×n an approximation of the Hessian of the Lagrangian
function all identified by an iteration index k. Then a quadratic programming
subproblem of the form

minimize 1
2
dT Bkd +∇f(xk)

T d

d ∈ IRn : ∇gj(xk)
T d + gj(xk) = 0 , j ∈ E,

∇gj(xk)
T d + gj(xk) ≥ 0 , j ∈ I

(3)

is formulated and must be solved in each iteration. Here we introduce index sets
E

.
= {1, . . . , me} and I

.
= {me + 1, . . . , m}. Let dk be the optimal solution, uk the

corresponding multiplier of this subproblem, and denote by

zk
.
=

(
xk

vk

)
, pk

.
=

(
dk

uk − vk

)
(4)

the composed iterate zk and search direction pk. A new iterate is obtained by

zk+1
.
= zk + αkpk , (5)

where αk ∈ (0, 1] is a suitable step length parameter.
However, the linear constraints in (3) can become inconsistent even if we assume

that the original problem (1) is solvable. As in Powell [21], we add an additional
variable δ to (3) and solve an (n + 1)-dimensional subproblem with consistent con-
straints.

4

Another numerical drawback of (3) is that gradients of all constraints must be
reevaluated in each iteration step. But if xk is close to the solution, the calculation
of gradients of inactive nonlinear constraints is redundant. Given a constant ε > 0,
we define the sets

I
(k)
1 = {j ∈ I : gj(xk) ≤ ε or v

(k)
j > 0} , I

(k)
2 = I \ I

(k)
1 , (6)

vk = (v
(k)
1 , . . . , v(k)

m)T , and solve the following subproblem in each step,

minimize 1
2
dT Bkd +∇f(xk)

T d + 1
2
%kδ

2

d ∈ IRn, δ ∈ [0, 1] : ∇gj(xk)
T d + (1− δ)gj(xk) = 0 , j ∈ E,

∇gj(xk)
T d + (1− δ)gj(xk) ≥ 0 , j ∈ I

(k)
1 ,

∇gj(xk(j))
T d + gj(xk) ≥ 0 , j ∈ I

(k)
2 .

(7)

The indices k(j) ≤ k denote previous iterates where the corresponding gradient has

been evaluated the last time. We start with I
(0)
1

.
= I and I

(0)
2

.
= ∅ and reevalu-

ate constraint gradients in subsequent iterations only if the constraint belongs to

the active set I
(k)
1 . The remaining rows of the Jacobian matrix remain filled with

previously computed gradients.
We denote by (dk, uk) the solution of (7), where uk is the multiplier vector, and

by δk the additional variable to prevent inconsistent linear constraints. Under a
standard regularity assumption, i.e., the constraint qualification, it is easy to see
that δk < 1.

Bk is a positive-definite approximation of the Hessian of the Lagrange function.
For the global convergence analysis presented in this paper, any choice of Bk is
appropriate as long as the eigenvalues are bounded away from zero. However, to
guarantee a superlinear convergence rate, we update Bk by the BFGS quasi-Newton
method

Bk+1
.
= Bk +

aka
T
k

bT
k ak

− Bkbkb
T
k Bk

bT
k Bkbk

(8)

with
ak

.
= 5xL(xk+1, uk)−5xL(xk, uk) ,

bk
.
= xk+1 − xk.

(9)

Usually, we start with the unit matrix for B0 and stabilize the formula by requiring
that aT

k bk ≥ 0.2 bT
k Bkbk, see Powell [21].

The penalty parameter %k is required to reduce the perturbation of the search
direction by the additional variable δ as much as possible. A suitable choice is given
by Schittkowski [26],

%k
.
= max

(
%0,

%∗(dT
k−1Ak−1uk−1)

2

(1− δk−1)2dT
k−1Bk−1dk−1

)
(10)

for k > 0 and a constant %∗ ≥ 1.

5

To enforce global convergence of the SQP method, we have to select a suitable
penalty parameter rk and a step length αk, see (5), subject to a merit function
φk(α). We use the differentiable augmented Lagrange function of Rockafellar [24],

Φr(x, v)
.
= f(x)− ∑

j∈E∪I1

(vjgj(x)− 1

2
rjgj(x)2)− 1

2

∑

j∈I2

v2
j /rj , (11)

with v = (v1, . . . , vm)T , r = (r1, . . . , rm)T , I1(x, v, r)
.
= {j ∈ I : gj(x) ≤ vj/rj} and

I2(x, v, r)
.
= I \I1(x, v, r), cf. Schittkowski [26]. If there is no confusion, we will just

denote I1(x, v, r) and I2(x, v, r) by I1 and I2, respectively. The merit function is
then defined by

φk(α)
.
= Φrk+1

(zk + αpk) , (12)

see also (4). To ensure that pk is a descent direction of Φrk+1
(zk), i.e., that

φ′k(0) = ∇Φrk+1
(zk)

T pk < 0 , (13)

the new penalty parameter rk+1 must be selected carefully. Each coefficient r
(k)
j of

rk is updated by

r
(k+1)
j

.
= max

σ

(k)
j r

(k)
j ,

2m(u
(k)
j − v

(k)
j)

(1− δk)dT
k Bkdk

 (14)

with uk = (u
(k)
1 , . . . , u(k)

m)T , vk = (v
(k)
1 , . . . , v(k)

m)T and j = 1, . . ., m. The sequence

{σ(k)
j } is introduced to allow decreasing penalty parameters at least in the beginning

of the algorithm by assuming that σ
(k)
j ≤ 1. A sufficient condition to guarantee

convergence of {r(k)
j } is that there exists a positive constant ζ with

∞∑

k=0

[
1− (σ

(k)
j)ζ

]
< ∞ (15)

for j = 1, . . . ,m. The above condition is somewhat weaker than the one in [26]

obtained for ζ = 1. A possible practical choice of σ
(k)
j is

σ
(k)
j

.
= min

1,

k√
r
(k)
j

 . (16)

3 An SQP Algorithm with Non-monotone Line

Search and Distributed Function Evaluations

The implementation of a line search algorithm is a critical issue when implementing
a nonlinear programming algorithm, and has significant effect on the overall effi-
ciency of the resulting code. On the one hand we need a line search to stabilize the

6

algorithm, on the other hand it is not advisable to waste too many function calls.
Moreover, the behavior of the merit function becomes irregular in case of constrained
optimization because of very steep slopes at the border caused by penalty terms.
Even the implementation is more complex than shown below, if linear constraints
or bounds for variables are to be satisfied during the line search.

Typically, the step length αk is chosen to satisfy the Armijo [1] condition

φk(αk) ≤ φk(0) + µαkφ
′
k(0) , (17)

see for example Ortega and Rheinboldt [18], or any other related stopping rule. Since
pk is a descent direction, i.e., φ′k(0) < 0, we achieve at least a sufficient decrease
of the merit function at the next iterate. The test parameter µ must be chosen
between 0 and 0.5.

αk is chosen by a separate algorithm which should take the curvature of the merit
function into account. If αk is shrinking too fast, the line search terminates very
early and the resulting step sizes might become too small leading to a higher number
of outer iterations. On the other hand, a larger value close to one requires too many
function calls during the line search. Thus, we need some kind of compromise which
is obtained by applying first a polynomial interpolation, typically a quadratic one,
combined with a bisection strategy in irregular situations, if the interpolation scheme
does not lead to a reasonable new guess. (17) is then used as a stopping criterion.

However, practical experience shows that monotonicity requirement (17) is often
too restrictive especially in case of very small values of φ′r(0), which are caused by
numerical instabilities during the solution of the quadratic programming subproblem
or, more frequently, by inaccurate gradients. To avoid interruption of the whole
iteration process, the idea is to conduct a line search with a more relaxed stopping
criterion. Instead of testing (17), we accept a stepsize αk as soon as the inequality

φk(αk) ≤ max
k−l(k)≤j≤k

φj(0) + µαkφ
′
k(0) (18)

is satisfied, where l(k) is a predetermined parameter with l(k) ∈ {0, . . . , min(k, L)},
L a given tolerance. Thus, we allow an increase of the reference value φrjk

(0), i.e.
an increase of the merit function value. For L = 0, we get back the original criterion
(17).

To implement the non-monotone line search, we need a queue consisting of merit
function values at previous iterates. We allow a variable queue length l(k) which can
be adapted by the algorithm, for example, if we want to apply a standard monotone
line search as long as it terminates successfully within a given number of steps and
to switch to the non-monotone one otherwise.

To summarize, we obtain the following non-monotone line search algorithm based
on quadratic interpolation and an Armijo-type bisection rule which can be applied
in the k-th iteration step of an SQP algorithm.

Algorithm 3.1 Let β, µ with 0 < β < 1 and 0 < µ < 0.5 be given, and let l(k) ≥ 0
be an integer.

7

Start: αk,0
.
= 1 .

For i = 0, 1, 2, . . . do:

1) If
φk(αk,i) ≤ max

k−l(k)≤j≤k
φj(0) + µ αk,i φ′k(0) , (19)

let ik
.
= i, αk

.
= αk,ik and stop.

2) Compute ᾱk,i
.
=

0.5 α2
k,i φ′r(0)

αk,iφ′r(0)− φr(αk,i) + φr(0)
.

3) Let αk,i+1
.
= max(β αk,i, ᾱk,i) .

Corresponding convergence results for the monotone case, i.e., L = 0, are found
in Schittkowski [26]. ᾱk,i is the minimizer of the quadratic interpolation and we
use a relaxed Armijo-type descent property for checking termination. Step 3) is
required to prevent too small step sizes, see above. The line search algorithm must be
implemented together with additional safeguards, for example to prevent violation
of bounds and to limit the number of iterations.

Now we are able to formulate the SQP algorithm for solving the constrained
nonlinear programming problem (1), see Schittkowski [26] for further details. First,
we select a few real constants ε, β, µ, δ̄, %̄, ε, %, and of an integer constant L, that
are not changed within the algorithm and that satisfy

ε ≥ 0 , 0 ≤ β ≤ 1 , 0 < µ < 0.5 , 0 ≤ δ̄ < 1 , %̄ > 1 , ε > 0, , % > 0 , L ≥ 0 .

Moreover, we choose starting values x0 ∈ IRn, v0 ∈ IRm with v
(0)
j ≥ 0 for j ∈ I,

B0 ∈ IRn×n positive definite, and r0 ∈ IRm with r
(0)
j > 0 for j = 1, . . ., m, and set

I
(0)
1

.
= I and I

(0)
2

.
= ∅. The main steps consist of the following instructions:

Algorithm 3.2 Start: Evaluate f(x0), ∇f(x0), gj(x0), and ∇gj(x0), j = 1, ..., m.

For k = 0, 1, 2, ... compute xk+1, vk+1, Bk+1, rk+1, %k+1, and I
(k+1)
1 as follows:

Step 1. Solve the quadratic programming subproblem (7) and denote by dk, δk the
optimal solution and by uk the optimal multiplier vector. If δk ≥ δ̄, let %k

.
= %̄%k

and solve (7) again

Step 2. Determine a new penalty parameter rk+1 by (14) and (16).

Step 3. If φ′k(0) ≥ 0, let %k
.
= %̄%k and go to Step 1.

Step 4. Define the new penalty parameter %k+1 by (10).

Step 5. Choose a queue length l(k), 0 ≤ l(k) ≤ L, to apply Algorithm 3.1 with
respect to the merit function φk(α), see (12), to get a step length αk.

8

Step 6. Let xk+1
.
= xk +αkdk, vk+1

.
= vk +αk(uk− vk) be new iterates and evaluate

f(xk+1), gj(xk+1), j = 1, . . ., m, ∇f(xk+1), I
(k+1)
1 by (6), and ∇gj(xk+1),

j ∈ E ∪ I
(k+1)
1 . If the Karush-Kuhn-Tucker optimality conditions are satisfied

subject to the tolerance ε, then stop.

Step 7. Compute a suitable new positive-definite approximation of the Hessian of
the Lagrange function Bk+1, e.g., by the modified version of (8), set k

.
= k +1,

and repeat the iteration.

To implement Algorithm 3.2, various modifications are necessary. Despite of a
theoretically well-defined procedure, the practical code might fail because of round-
off errors or violations of some assumptions. For example, we need additional bounds
to limit the number of cycles in Step 1, between Step 3 and Step 1, in the line search,
and to limit the number of outer iteration steps.

There remain a few comments to illustrate some further algorithmic details.

1. Although it is sometimes possible to find a reasonable good starting point
x0, it is often impossible to get an initial guess for the Hessian the Lagrange
function and the multipliers. Thus, the choice of B0

.
= I, where I denotes the

n by n identity matrix, and v0
.
= 0 is often used in practice.

2. Matrix Bk could be updated for example by the stabilized BFGS formula (8)
or by an equivalent update formula for the factors of a Cholesky decomposition
Bk = LkL

T
k , where Lk is a lower triangular matrix.

3. The quadratic programming subproblem can be solved by any available black-
box algorithm. If a Cholesky decomposition is updated as outlined before,
the choice of a primal-dual algorithm is recommended, see e.g. Goldfarb and
Idnani [10]. The additional variable δ requires the introduction of an additional
column and row to Bk, where the lowest diagonal element contains the penalty
parameter %k.

4. Since the introduction of the additional variable δ leads to an undesired per-
turbation of the search direction, it is recommended to solve first problem
(7) without the additional variable and to introduce δ only in case of a non-
successful return.

4 Global Convergence Analysis

The convergence analysis of Algorithm 3.2 depends mainly on the Karush-Kuhn-
Tucker conditions for the quadratic programming subproblem (7). Define

w
(k)
j =

∇gj(xk)

T dk + (1− δk)gj(xk) , if j ∈ E ∪ I
(k)
1 ,

∇gj(xk(j))
T dk + gj(xk) , if j ∈ I

(k)
2 .

(20)

9

Let ν
(k)
1 and ν

(k)
2 be the multipliers with respect to the lower and upper bounds for

the additional variable δ. The necessary optimality conditions of (7) can be written
in the form

a) Bkdk +∇f(xk)−∑
j∈E∪I

(k)
1

u
(k)
j ∇gj(xk)−∑

j∈I
(k)
2

u
(k)
j ∇gj(xk(j)) = 0 ,

b) %kδk +
∑

j∈E∪I
(k)
1

u
(k)
j gj(xk)− ν

(k)
1 + ν

(k)
2 = 0 ,

c) w
(k)
j = 0, j ∈ E ,

d) w
(k)
j ≥ 0 , j ∈ I,

e) 0 ≤ δk ≤ 1,

f) u
(k)
j ≥ 0 , j ∈ I,

g) ν
(k)
1 ≥ 0 ,

h) ν
(k)
2 ≥ 0 ,

i) w
(k)
j u

(k)
j = 0 ,

j) ν
(k)
1 δk = 0 ,

k) ν
(k)
2 (1− δk) = 0 .

(21)

To prove the global convergence of Algorithm 3.2, i.e., the approximation of a
Karush-Kuhn-Tucker (KKT) point of (1) starting from an arbitrary x0 ∈ IRn, we
closely follow the analysis of Schittkowski [26] for a monotone line search.

We assume throughout this section that the constraint qualification is satisfied
at all Karush-Kuhn-Tucker points of the nonlinear program (1), and at all iterates
of the SQP algorithm. This is a standard assumption for proving global and local
convergence theorems and serves to guarantee that the multipliers of the quadratic
subproblems are unique and remain bounded. A first consequence is that the loop
in Step 1 of Algorithm 3.2 is finite, see Lemma 4.4 of [26].

First, we have to investigate whether Algorithm 3.2 is well defined and consider
some internal loops. An important general assumption is that the feasible domain
of the nonlinear program (1) is bounded. However, we dropped additional bounds
of the form

xl ≤ x ≤ xu

from (1) only to simplify the notation. They can be added to all practical opti-
mization problems without loss of generality, and are also included in corresponding
implementations of SQP methods. Since bounds are transformed directly to bounds
of the quadratic programming subproblem (7), subsequent iterates will also satisfy
them and, moreover, the subproblem is always uniquely solvable.

The subsequent theorem will be fundamental for the convergence analysis, which
is taken from [26] and which does not depend on the new line search procedure. It
shows that the search direction computed from (7) is a descent direction of the merit

10

function φk(α), i.e. that φ′k(0) < 0, and that therefore the line search is well-defined.
Moreover, it is possible to show that there is a sufficiently large decrease of the merit
function from which the global convergence can be derived.

Theorem 4.1 Let xk, vk, dk, δk, uk, Bk, rk, %k, and Ī
(k)
1 be given iterates of Algo-

rithm 3.2, k ≥ 0, and assume that there are positive constants γ and δ̄ with

(i) dT
k Bkdk ≥ γ‖dk‖2 for some γ ∈ (0, 1] and all k,

(ii) δk ≤ δ̄ < 1 for all k,

(iii) %k ≥ 1
γ(1− δ̄)2‖

∑
j∈Ī

(k)
1

v
(k)
j ∇gj(xk)‖2 for all k.

Then

φ′k(0) = ∇Φrk+1
(xk, vk)

T

(
dk

uk − vk

)
≤ −1

4
γ‖dk‖2 . (22)

Any properties of a quasi-Newton update formula for Bk are not exploited to get
the sufficient decrease property. The only requirement for the choice of Bk is that
the eigenvalues of this positive definite matrix remain bounded away from zero. In
the extreme case, Bk = I and γ = 1 satisfy (i). Assumption (ii) follows directly
from the finiteness of the loop in Step 1 of Algorithm 3.2, and (iii) allows at least
a local estimate of the penalty parameter %k by replacing γ by dT

k Bkdk/‖dk‖2 and δ̄
by δk. Moreover, since the lower bound (iii) does not depend on dk, uk, or %k, we
conclude that the loop between Step 3 and Step 1 of Algorithm 3.2 is finite.

It is shown in Lemma 4.4 of [26] that

αk,i+1 ≤ max

(
β,

1

2(1− µ)

)
αk,i (23)

for φ′k(0) < 0 and an iteration sequence {αk,i} of the line search algorithm, whenever
(19) is not valid for an i ≥ 0. Since αk,i → 0 for i → ∞ and φ′k(0) < 0 is
impossible without violating (19), we get also the finite termination of the line
search procedure 3.1.

Next, the boundedness and convergence of the penalty parameters rk is shown,
see also [26].

Lemma 4.2 Assume that {r(k)
j }k∈N is bounded and σ

(k)
j ≤ 1 for all k. If (15) holds

for a ζ > 0, there is a r∗j ≥ 0, j = 1, . . ., m, with

lim
k→∞

r
(k)
j = r∗j .

11

Proof To simplify the notation, we omit the index j. Let R be an upper bound
of the penalty parameters. Assume that there are two different accumulation points
r∗ and r∗∗ of {r(k)} with r∗ < r∗∗. Then for ε = 1

3
[(r∗∗)ζ − (r∗)ζ] > 0 there exist

infinitely many indices k and k + qk with

|(r(k+qk))ζ − (r∗)ζ | ≤ ε, |(r(k))ζ − (r∗∗)ζ | ≤ ε .

It follows that

0 < ε = (r∗∗)ζ − (r∗)ζ − 2ε ≤ −[(r(k+qk))ζ − (r(k))ζ] ≤ R
qk−1∑

i=0

[1− (σ(k+i))ζ] .

Since the above inequality is valid for infinitely many k and the right-hand side
tends to zero, we get a contradiction. q.e.d.

The subsequent lemma shows a certain continuity property of the merit function
subject to the penalty parameters.

Lemma 4.3 Assume that Ω ∈ IRm+n is a compact subset and rj ≥ c for a positive
constant c and j ∈ E∪I. For any ε > 0, there exists a ξ > 0 such that if |rj− r̃j| < ξ
for j ∈ E ∪ I, then

|Φr(x, v)− Φr̃(x, v)| ≤ ε for all (x, v) ∈ Ω. (24)

Proof Since Ω is a compact subset and all gj(x) is continuous differentiable, there
exists M > 0 such that

|gj(x)| ≤ M, |vj| ≤ M, for all j ∈ E ∪ I and (x, v) ∈ Ω. (25)

Denote I1 = I1(x, v, r), I2 = I2(x, v, r), Ĩ1 = I1(x, v, r̃) and Ĩ2 = I2(x, v, r̃). For
any ε, we know from (25) and the assumption that there exists ξ > 0 such that if
|rj − r̄j| < ξ for j ∈ E ∪ I, then

∆1
.
=

∣∣∣∣ Φr(x, v)−
[
f(x)− ∑

j∈E∪I1

(vjgj(x)− 1

2
r̃jgj(x)2)− 1

2

∑

j∈I2

v2
j /r̃j

] ∣∣∣∣ ≤
1

2
ε (26)

and ∣∣∣∣
1

rj

− r̃j

2 r2
j

− 1

2 r̃j

∣∣∣∣ ≤
ε

2(m−me)R2
. (27)

By noting that I1\Ĩ1 = Ĩ2\I2 and Ĩ1\I1 = I2\Ĩ2, we get

∆2
.
=

∣∣∣∣ Φr̃(x, v)−
[
f(x)− ∑

j∈E∪I1

(vjgj(x)− 1

2
r̃jgj(x)2)− 1

2

∑

j∈I2

v2
j /r̃j

] ∣∣∣∣

=
[∑

j∈I1\Ĩ1
+

∑

j∈Ĩ1\I1

]∣∣∣∣vjgj(x)− 1

2
r̃jgj(x)2 − 1

2

v2
j

r̃j

∣∣∣∣

12

≤
[∑

j∈I1\Ĩ1
+

∑

j∈Ĩ1\I1

]
v2

j

∣∣∣∣
1

rj

− r̃j

2 r2
j

− 1

2 r̃j

∣∣∣∣

≤ (m−me)R
2

∣∣∣∣
1

rj

− r̃j

2 r2
j

− 1

2 r̃j

∣∣∣∣

≤ 1

2
ε . (28)

The first inequality (28) uses the fact that |vjgj(x) − 1
2
r̃jgj(x)2 − 1

2

v2
j

r̃j
| achieves its

maximum at gj(x) = vj/rj for any j ∈ (I1\Ĩ1) ∪ (Ĩ1\I1). Combining (26) and (28),
we obtain

|Φr(x, v)− Φr̃(x, v)| ≤ ∆1 + ∆2 ≤ ε , (29)

which completes our proof. q.e.d.
The non-monotone line search makes use of a bounded length of the queue of

known merit function values. Basically, the situation can be illustrated by the
subsequent lemma from where a contradiction is later derived.

Lemma 4.4 For any constant ε > 0 and a positive integer L, consider a sequence
{sk : k = 0, 1, 2, . . .} of real numbers satisfying

sk+1 ≤ max
k−L≤i≤k

si − ε , for all k ≥ L. (30)

For ψ(j)
.
= max{si : jL ≤ i ≤ (j + 1)L}, we get

ψ(j + 1) ≤ ψ(j)− ε (31)

for all j ≥ 0 and sk tends to −∞ as k →∞.

Proof We show by induction that

sk+j ≤ max
k−L≤i≤k

si − ε (32)

for all k ≥ L holds, j ≥ 0. (30) implies that (32) holds with j = 0. Assume that (32)
is true for j = 1, . . . , j0. Then by (30) with k replaced by k + j0 and the induction
assumption, we get

sk+j0+1 ≤ max
k+j0−L≤i≤k+j0

si − ε

≤ max
{

max
k≤i≤k+j0

si, max
k−L≤i≤k

si

}
− ε

≤ max
k−L≤i≤k

si − ε . (33)

Thus, (32) is true with j = j0 + 1. By induction, we know that (32) holds for all
j ≥ 0. By (32) and the definition of ψ(j), we know that (31) holds. It follows from
(31) that

ψ(j) ≤ ψ(0)− j ε for all j ≥ 1, (34)

which implies that ψ(j) and hence sk tend to −∞. q.e.d.

13

Now we prove the following main convergence result, a generalization of Theo-
rem 4.6 in [26].

Theorem 4.5 Let xk, vk, dk, δk, uk, Bk, rk, %k, and Ī
(k)
1 be given iterates of Algo-

rithm 3.2, k ≥ 0. , such that for positive constants γ and δ̄ with

(i) dT
k Bkdk ≥ γ‖dk‖2 for all k,

(ii) δk ≤ δ̄ < 1 for all k,

(iii) %k ≥ 1
γ(1− δ̄)2‖

∑
j∈Ī

(k)
1

v
(k)
j ∇gj(xk)‖2 for all k,

(iv) {xk}, {dk}, {uk}, and {Bk} are bounded.

Then for any small ε > 0 there exists a k ≥ 0 with

a) ‖dk‖ ≤ ε,

b) ‖R−1/2
k+1 (uk − vk)‖ ≤ ε.

As outlined before, the assumptions are not restrictive at all. Since upper and
lower bounds can be added without loss of generality, all iterates xk remain bounded,
thus also all dk, and, because of the constraint qualification, also all multipliers uk.
This condition also guarantees that the additional variables δk introduced to avoid
inconsistent linearized constraints, remain bounded away from one. Assumption
(iii) is satisfied by choosing a sufficiently large penalty factor % by the loop between
Step 1 and Step 3 of Algorithm 3.2, see also the discussion after Theorem 4.1.

Proof First note that the boundedness of {uk} implies the boundedness of {vk},
since αk ≤ 1 for all k. To show a), let us assume that there is an ε > 0 with

‖dk‖ ≥ ε (35)

for all k. From the definition of rk+1, k > 0, we obtain either r
(k+1)
j ≤ σ

(0)
j r

(0)
j or

r
(k+1)
j ≤ 2m(u

(k∗)
j − v

(k∗)
j)2

(1− δk∗)dT
k∗Bk∗dk∗

≤ 2m(u
(k∗)
j − v

(k∗)
j)2

(1− δ) γ ε2

for some k∗ ≤ k, j = 1, ..., m. Since uk and therefore also vk are bounded, we
conclude that {rk} remains bounded and Lemma 4.2 implies that there is some
r > 0 with

lim
k→∞

rk = r . (36)

14

Now consider an iteration index k and introduce again the compound vectors zk for
the iterates and pk for the search direction, see (4). Then by Theorem 4.1,

Φrk+1
(zk+1) ≤ max

k−l(k)≤i≤k
Φri+1

(zi) + µαk∇Φrk+1
(zk)

T pk

≤ max
k−l(k)≤i≤k

Φri+1
(zi)− 1

4
µαkγ‖dk‖2

< max
k−l(k)≤i≤k

Φri+1
(zi)− 1

4
µγε2αk . (37)

Next we have to prove that αk cannot tend to zero. Since all functions defining
Φr are continuously differentiable, rk+1 is bounded, and zk, pk remain in a compact
subset of IRn+m, we can find an ᾱ > 0 with

|∇Φrk+1
(zk + αpk)

T pk −∇Φrk+1
(zk)

T pk| ≤ ‖∇Φrk+1
(zk + αpk)−∇Φrk+1

(zk)‖‖pk‖
≤ 1

4
(1− µ) γ ε2

(38)
for all α ≤ ᾱ and for all k. Using the mean value theorem, (38), Theorem 4.1 and
(35), we obtain for all α ≤ ᾱ and k ≥ 0

Φrk+1
(zk + αpk)−maxk−l(k)≤i≤k Φri+1

(zi)− µα∇Φrk+1
(zk)

T pk

≤ Φrk+1
(zk + αpk)− Φrk+1

(zk)− µα∇Φrk+1
(zk)

T pk

= α∇Φrk+1
(zk + ξkαpk)

T pk − µα∇Φrk+1
(zk)

T pk

≤ α∇Φrk+1
(zk)

T pk + 1
4
α (1− µ) γ ε2 − µα∇Φrk+1

(zk)
T pk

≤ −1
4
α(1− µ) γ ‖dk‖2 + 1

4
α (1− µ) γ ε2

≤ 0 .

(39)

In the above equation, ξk ∈ [0, 1) depends on k. The line search algorithm guarantees
that

αk,ik−1 ≥ ᾱ ,

since otherwise αk,ik−1 would have satisfied the stopping condition (18), and further-
more

αk = αk,ik ≥ βαk,ik−1 > βᾱ .

It follows from (37) that

Φrk+1
(zk+1) ≤ max

k−l(k)≤i≤k
Φri+1

(zi)− 2 ε̄ (40)

for ε
.
= 1

8
µγε2βᾱ. Now we consider the difference Φrk+2

(zk+1) − Φrk+1
(zk+1). Since

rk+1 → r∗ > 0 as k →∞, gj(xk) and vk are bounded, we know by Lemma 4.3 that
there exists some integer k0 such that

Φrk+2
(zk+1)− Φrk+1

(zk+1) ≤ ε̄ for all k ≥ k0. (41)

15

By (40), (41) and l(k) ≤ L, we obtain

Φrk+2
(zk+1) ≤ max

k−L≤i≤k
Φri+1

(zi)− ε̄ (42)

for all sufficiently large k. Thus, we conclude from Lemma 4.4 that Φrk+1
(zk) tends

to −∞. This is a contradiction to the fact that {Φrk+1
(zk)} is bounded below and

proves statement a). Statement b) follows from a), the definition of rk+1, cf. (14),
and the boundedness of {Bk},

‖R−1/2
k+1 (uk − vk)‖2 =

m∑

j=1

(u
(k)
j − v

(k)
j)2

r
(k+1)
j

≤ 1

2m

m∑

j=1

(1− δk)d
T
k Bkdk

≤ 1

2
dT

k Bkdk ,

which completes the proof. q.e.d.

Theorem 4.6 Let xk, vk, dk, δk, uk, Bk, I
(k)
1 by Algorithm 3.2 and assume that

all assumptions of Theorem 4.5 are valid. Then there exists an accumulation point
(x∗, u∗) of {(xk, uk)} satisfying the Karush-Kuhn-Tucker conditions for problem (1).

Proof The boundedness of {xk}, {uk} and the results of Theorem 4.5 guarantee
the existence of x∗ ∈ IRn, u∗ ∈ IRm, and an infinite subset S ⊆ N with

limk∈S xk = x∗ ,

limk∈S uk = u∗ ,

limk∈S dk = 0 ,

limk∈S ‖R−1/2
k+1 (uk − vk)‖ = 0 .

(43)

Since {δk} is bounded away from unity, (20) and (21c, d) give

gj(x
∗) = 0 , j = 1, ..., me,

gj(x
∗) ≥ 0 , j = me + 1, ..., m,

(44)

showing that x∗ is feasible. From (21f) we get

u∗j ≥ 0 , j = 1, ...,m, (45)

and (21i) leads to
u∗jgj(x

∗) = 0 , j = 1, ..., m. (46)

Assume now there exists a j > me so that j ∈ I
(k)
2 for infinitely many k ∈ S, since

otherwise we are done. The definition of I
(k)
2 , (6), implies gj(x

∗) > ε and (46) gives
u∗j = 0. We conclude from (21a) that

∇xL(x∗, u∗) = 0 . (47)

Equations (44) to (47) show that (x∗, u∗) satisfies the Karush-Kuhn-Tucker condi-
tions of (1). q.e.d.

16

5 Numerical Results

The goal is to test different line search variants of the SQP algorithm under an
evaluation scheme which is as close to practical situations as possible. Thus, we
approximate derivatives numerically by simple forward differences, although analyt-
ical derivatives for most test problems are available. Real-life applications often lead
to very noisy or inaccurate function values, which even deteriorate the accuracy by
which gradients are computed.

We add now lower and upper bounds to the nonlinear program (1) as was im-
plicitly assumed in the previous section for getting bounded iterates,

minimize f(x)
x ∈ IRn : gj(x) = 0 , j = 1, . . . , me,

gj(x) ≥ 0 , j = me + 1, . . . , m,
xl ≤ x ≤ xu .

(48)

Our numerical tests use the 306 academic and real-life test problems published
in Hock and Schittkowski [14] and in Schittkowski [27]. Part of them are also
available in the CUTE library, see Bongartz et. al [3], and their usage is described
in Schittkowski [28]. The test problems represent all possible difficulties observed in
practice, ill-conditioning, badly scaled variables and functions, violated constraint
qualification, numerical noise, non-smooth functions, or multiple local minima. All
examples are provided with exact solutions, either known from analytical solutions
or from the best numerical data found so far. However, since most problems are
non-convex, we only know of the existence of one local minimizer. Thus, the SQP
code might terminate at a better local minimizer without knowing whether this is
a global one or not.

For the reasons pointed out above, we approximate derivatives by forward dif-
ferences. The Fortran codes are compiled by the Intel Visual Fortran Compiler,
Version 9.0, under Windows XP64 and are executed on an AMD Opteron 64 bit
with 4 MB memory. Total calculation time for solving all test problems is about 1
sec.

First we need a criterion to decide, whether the result of a test run is considered
as a successful return or not. Let ε > 0 be a tolerance for defining the relative
accuracy, xk the final iterate of a test run, and x? a known local solution. Then we
call the output a successful return, if the relative error in the objective function is
less than ε and if the maximum constraint violation is less than ε2, i.e. if

f(xk)− f(x?) < ε|f(x?)| , if f(x?) <> 0

or
f(xk) < ε , if f(x?) = 0

and
r(xk)

.
= max(‖g(xk)

+‖∞) < ε2 ,

17

where ‖ . . . ‖∞ denotes the maximum norm and gj(xk)
+ .

= −min(0, gj(xk)) for j >
me and gj(xk)

+ .
= gj(xk) otherwise.

We take into account that a code returns a solution with a better function value
than the known one within the error tolerance of the allowed constraint violation.
However, there is still the possibility that an algorithm terminates at a local solution
different from the given one. Thus, we call a test run a successful one, if the inter-
nal termination conditions are satisfied subject to a reasonably small termination
tolerance, and if in addition

f(xk)− f(x?) ≥ ε|f(x?)| , if f(x?) <> 0

or
f(xk) ≥ ε , if f(x?) = 0

and
r(xk) < ε2 .

For our numerical tests, we use ε = 0.01, i.e., we require a final accuracy of one per
cent. Gradients are approximated by forward differences

∂

∂xi

f(x) ≈ 1

ηi

(
f(x + ηiei)− f(x)

)
. (49)

Here ηi = η max(10−5, |xi|) and ei is the i-th unit vector, i = 1, . . . , n. The tolerance
η is set to η = ηm

1/2, where ηm is a guess for the accuracy by which function values
are computed, i.e., either machine accuracy or an estimate of the noise level in
function computations. In a similar way, derivatives of constraints are computed.

The Fortran implementation of the SQP method introduced in the previous sec-
tion, is called NLPQLP, see Schittkowski [30]. Functions and gradients must be
provided by reverse communication and the quadratic programming subproblems
are solved by the primal-dual method of Goldfarb and Idnani [10] based on numer-
ically stable orthogonal decompositions, see also Powell [22] and Schittkowksi [29].
NLPQLP is executed with termination accuracy 10−7 and the maximum number of
iterations is 500.

In the subsequent tables, we use the notation

nsucc : number of successful test runs (according to above definition)
nfunc : average number of function evaluations for successful test runs
ngrad : average number of gradient evaluations for successful test runs

One gradient computation corresponds to one iteration of the SQP method. The
average numbers of function and gradient evaluations are computed only for the
successful test runs. To test the stability of these formulae, we add some randomly
generated noise to function values in the following way. A uniformly distributed
random number r ∈ (0, 1) and a given error level εerr are used to perturb function
values by the factor 1 + εerr(1 − 2r). Non-monotone line search is applied with a
queue size of L = 30, but two different strategies, and the line search calculations
of Algorithm 3.1 are required. We test the following three situations:

18

version η = ηm
1/2 η = 10−7

εerr nsucc nfunc ngrad nsucc nfunc ngrad

(i) 0 301 31 20 301 31 20
10−12 298 37 21 300 40 22
10−10 296 41 21 281 52 22
10−8 279 47 20 205 56 20
10−6 253 52 18 45 58 9
10−4 208 54 15 15 52 6
10−2 97 52 12 18 49 5

(ii) 0 300 29 23 301 29 23
10−12 296 31 25 300 40 33
10−10 299 42 32 295 105 90
10−8 296 57 48 253 151 128
10−6 296 107 75 118 234 156
10−4 284 137 103 96 314 113
10−2 252 154 116 71 212 61

(iii) 0 303 33 20 303 69 22
10−12 301 60 23 302 53 26
10−10 300 63 24 295 94 32
10−8 300 80 26 274 136 28
10−6 293 110 28 151 222 17
10−4 280 138 27 132 324 17
10−2 237 167 23 108 360 18

Table 1: Test Results

(i) We let l(k) = 0 for all iterations, i.e. for all k. This corresponds to the
standard monotone line search.

(ii) We define l(k) = L for all iterations and get a non-monotone line search with
fixed queue length.

(iii) We let l(k) = 0 for all iterations as long as the monotone line search terminates
successfully. In case of an error, we apply the non-monotone line search with
fixed queue length l(k) = L.

Table 1 shows the corresponding results for the increasing random perturbations
defined by εerr. The tolerance for approximating gradients, ηm, is set to the machine
accuracy in case of εerr = 0, and to the random noise level otherwise. The last three
columns show numerical results obtained for a fixed tolerance η = 10−7 for the
forward difference formula (49).

The results are quite surprising and depend heavily on the new non-monotone
line search strategy. First we observe that even in case of accurate function values,

19

the non-monotone line search with a fixed l(k) = L requires a larger number of
iterations. With increasing noise, the stability is increased by cost of an higher
number of iterations. On the other hand, the flexible strategy to use non-monotone
line search only in case of false termination of the monotone one, is as efficient and
reliable as the pure monotone line search in case of accurate function values, but
much more problems can successfully be solved in case of random noise. We are
able to solve 77 % of the test examples even in case of extremely noisy function
values with at most two correct digits, where only one digit of the gradient values
is correct.

The choice of a fixed the tolerance η for gradient approximations, i.e., η = 10−7,
is an unlikely worst-case scenario and should only happen in a situation, where a
black-box derivative calculation is used and where a user is not aware of the accuracy
by which derivatives are approximated. Whereas nearly all test runs break down
with error messages for the monotone line search and large random perturbations,
the non-monotone line search is still able to terminate in about 35 % of all test runs,
see Table 1.

In case of an increasing number of false terminations, we observe a reduction of
the average number of iterations because of the fact that only the ’simple’ problems
could successfully be solved. When comparing the number of function calls to the
number of iterations, we see that more and more line search steps are needed.

6 Conclusions and Discussions

We present a modification of an SQP algorithm to increase its stability in case of
noisy function values. Numerical tests favor a version where traditional monotone
line search is applied as long as possible, and to switch to a non-monotone one only
in case of false termination. Efficiency and robustness is evaluated over a set of 306
standard test problems. To represent typical practical environments, gradients are
approximated by forward differences. With the new non-monotone line search, we
are able to solve about 80 % of the test examples in case of extremely noisy function
values with at most two correct digits in function and one correct digit in gradient
values.

The non-monotone technique is often used to design optimization algorithms.
For descent methods, the introduction of the non-monotone technique significantly
improves the original monotone algorithm even for highly nonlinear functions, see
e.g. Toint [33, 34]. A careful implementation of the non-monotone line search is
indispensable in these situations. For some optimization methods like the Barzilai-
Borwein gradient method and the SQP algorithm based on the L1 merit function, a
descent direction is not guaranteed in each iteration, and usage of a non-monotone
line search is mandatory, see Raydan [23] and Panier and Tits [19]).

In this paper, we found another motivation to investigate non-monotone line
search, the minimization of noisy functions. If the monotone line search fails, the

20

algorithm is often able to continue and to find an acceptable solution. However,
when trying to apply the non-monotone line search from the beginning, reliability
and efficiency become worse.

Our theoretical convergence results assume that there is no noise and they are
deducted from existing ones based on sufficient decrease of a merit function. It is an
open question whether we could get the same convergence results by taking random
perturbations into account for the theoretical analysis.

References

[1] Armijo L. (1966): Minimization of functions having Lipschitz continuous first
partial derivatives, Pacific Journal of Mathematics, Vol. 16, 1–3

[2] Bonnans J.F., Panier E., Tits A., Zhou J.L. (1992): Avoiding the Maratos
effect by means of a nonmonotone line search, II: Inequality constrained prob-
lems – feasible iterates, SIAM Journal on Numerical Analysis, Vol. 29, 1187–
1202

[3] Bongartz I., Conn A.R., Gould N., Toint Ph. (1995): CUTE: Constrained and
unconstrained testing environment, Transactions on Mathematical Software,
Vol. 21, No. 1, 123–160

[4] Conn A.R., Gould I.M., Toint P.L. (2000): Trust-Region Methods, SIAM,
Philadelphia

[5] Dai Y.H. (2002): On the nonmonotone line search, Journal of Optimization
Theory and Applications, Vol. 112, No. 2, 315–330.

[6] Deng N.Y., Xiao Y., Zhou F.J. (1993): Nonmonotonic trust-region algorithm,
Journal of Optimization Theory and Applications, Vol. 26, 259–285

[7] Edgar T.F., Himmelblau D.M. (1988): Optimization of Chemical Processes,
McGraw Hill

[8] Exler O., Schittkowski K. (2005): MISQP: A Fortran implementation of a
trust region SQP algorithm for mixed-integer nonlinear programming - user’s
guide, version 1.1, Report, Department of Computer Science, University of
Bayreuth

[9] Fletcher R. (1982): Second order correction for nondifferentiable optimization,
in: Watson G.A. (Hrsg.): Numerical analysis, Springer Verlag, Berlin, 85–114

[10] Goldfarb D., Idnani A. (1983): A numerically stable method for solving strictly
convex quadratic programs, Mathematical Programming, Vol. 27, 1-33

21

[11] Grippo L., Lampariello F., Lucidi S. (1986): A nonmonotone line search tech-
nique for Newtons’s method, SIAM Journal on Numerical Analysis, Vol. 23,
707–716

[12] Grippo L., Lampariello F., Lucidi S. (1989): A truncated Newton method with
nonmonotone line search for unconstrained optimization, Journal of Optimiza-
tion Theory and Applications, Vol. 60, 401–419

[13] Grippo L., Lampariello F., Lucidi S. (1991): A class of nonmonotone stabi-
lization methods in unconstrained optimization, Numerische Mathematik, Vol.
59, 779–805

[14] Hock W., Schittkowski K. (1981): Test Examples for Nonlinear Program-
ming Codes, Lecture Notes in Economics and Mathematical Systems, Vol.
187, Springer

[15] Hintermüller M. (2002): Solving nonlienar programming problems with noisy
function values and noisy gradients, Journal of Optimization Theory and Ap-
plications, Vol. 114, 133-169

[16] Ke X., Han J. (1995): A nonmonotone trust region algorithm for equality
constrained optimization, Science in China, Vol. 38A, 683–695

[17] Ke X., Liu G., Xu D. (1996): A nonmonotone trust-region algorithm for un-
constrained optimization, Chinese Science Bulletin, Vol. 41, 197–201

[18] Ortega J.M., Rheinbold W.C. (1970): Iterative Solution of Nonlinear Equa-
tions in Several Variables, Academic Press, New York-San Francisco-London

[19] Panier E., Tits A. (1991): Avoiding the Maratos effect by means of a nonmono-
tone line search, I: General constrained problems, SIAM Journal on Numerical
Analysis, Vol. 28, 1183–1195

[20] Papalambros P.Y., Wilde D.J. (1988): Principles of Optimal Design, Cam-
bridge University Press

[21] Powell M.J.D. (1978): A fast algorithm for nonlinearly constraint optimiza-
tion calculations, in: Numerical Analysis, G.A. Watson ed., Lecture Notes in
Mathematics, Vol. 630, Springer

[22] Powell M.J.D. (1983): On the quadratic programming algorithm of Goldfarb
and Idnani. Report DAMTP 1983/Na 19, University of Cambridge, Cam-
bridge

[23] Raydan M. (1997): The Barzilai and Borwein gradient method for the large-
scale unconstrained minimization problem, SIAM Journal on Optimization,
Vol. 7, 26–33

22

[24] Rockafellar R.T. (1974): Augmented Lagrange multiplier functions and du-
ality in non-convex programming, SIAM Journal on Control, Vol. 12, 268–285

[25] Schittkowski K. (1980): Nonlinear Programming Codes, Lecture Notes in Eco-
nomics and Mathematical Systems, Vol. 183 Springer

[26] Schittkowski K. (1983): On the convergence of a sequential quadratic program-
ming method with an augmented Lagrangian search direction, Optimization,
Vol. 14, 197-216

[27] Schittkowski K. (1987a): More Test Examples for Nonlinear Programming,
Lecture Notes in Economics and Mathematical Systems, Vol. 182, Springer

[28] Schittkowski K. (2002): Test problems for nonlinear programming - user’s
guide, Report, Department of Mathematics, University of Bayreuth

[29] Schittkowski K. (2003): QL: A Fortran code for convex quadratic programming
- user’s guide, Report, Department of Mathematics, University of Bayreuth,
2003

[30] Schittkowski K. (2004): NLPQLP20: A Fortran implementation of a sequen-
tial quadratic programming algorithm with distributed and non-monotone line
search - user’s guide, Report, Department of Computer Science, University of
Bayreuth

[31] Spellucci P. (1993): Numerische Verfahren der nichtlinearen Optimierung,
Birkhäuser

[32] Stoer J. (1985): Foundations of recursive quadratic programming methods for
solving nonlinear programs, in: Computational Mathematical Programming,
K. Schittkowski, ed., NATO ASI Series, Series F: Computer and Systems
Sciences, Vol. 15, Springer

[33] Toint P.L. (1996): An assessment of nonmontone line search techniques for
unconstrained optimization, SIAM Journal on Scientific Computing, Vol. 17,
725–739

[34] Toint P.L. (1997): A nonmonotone trust-region algorithm for nonlinear opti-
mization subject to convex constraints, Mathematical Programming, Vol. 77,
69–94

[35] Yuan Y.-X. (1985): On the superlinear convergence of a trust region algorithm
for nonsmooth optimization, Mathematical Programming, Vol. 31, 269–285

23

