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Abstract: Automatic differentiation is an interesting and important tool for all nu-

merical algorithms that require derivatives, e.g. in nonlinear programming, optimal

control, parameter estimation, differential equations. The basic idea is to avoid not

only numerical approximations, which are expensive with respect to CPU time and

contain round-off errors, but also hand-coded differentiation. The paper describes

the numerical implementation of a computer code with the name PCOMP. The main

intention of the approach used is to provide a flexible and portable FORTRAN code

for practical applications. The underlying language is described in the form of a

formal grammar and is a subset of FORTRAN with a few extensions. Besides a

parser that generates an intermediate code and that can be executed independently

from the evaluation routines, there are other subroutines for the direct computation

of function and gradient values and the evaluation of the Hessian matrix, which can

be called directly from a user program. On the other hand it is possible to generate

FORTRAN code for function and gradient evaluation that can be compiled and

linked separately. 2
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1. Introduction

Let f(x) be a nonlinear differentiable function with real values defined for all x ∈ R
n.

By automatic differentiation we understand the numerical computation of a derivative
value ∇f(x) of f at a given point x without truncation errors and without hand-coded
formulas.

Hand-coded differentiation is time-consuming and always full of human errors, at least
when more complicated functions are involved. To avoid these difficulties, software sys-
tems are available to generate derivative formulas symbolically. MACSYMA is probably
the best known system, distributed by Symbolics Inc. However the software is quite ex-
tensive and the execution is time-consuming. Griewank (1989) reports that the evaluation
of the Helmholtz energy function with n = 30 by another algebraic manipulation system
MAPLE, Char et al. (1988), failed after 15 minutes CPU time on a SUN 3/140 with 16
MB memory due to lack of memory space.

Numerical differentiation requires at least n additional function evaluations for one
gradient calculation and induces truncation errors. Although very easy to implement, the
numerical errors are often not tolerable, e.g. when the derivatives are used within another
numerical approximation scheme. A typical example is the differentiation of solutions of
differential equations in an optimal control problem with respect to control variables.

Automatic differentiation overcomes the drawbacks mentioned and is a very useful
tool in all practical applications that require derivatives. The resulting code can be used
for the evaluation of nonlinear function values by interpreting symbolic function input
without extra compilation and linking. Whenever needed, gradients can be evaluated
exactly at run time.

Symbolic function input and automatic differentiation is used particularly within in-
teractive nonlinear optimization systems like NLPSOLVER (Idnani (1987)), PADMOS
(Kredler et al. (1990)), SYSTRA (Kelevedzhiev and Kirov (1989)), EMP (Schittkowski
(1987a)), or EASY-OPT (Schittkowski (1993)). Another typical application is the pos-
sibility of including the techniques in mechanical optimal design systems based on FE-
techniques like MBB-LAGRANGE, cf. Kneppe (1990). In these cases, the whole system
is far too complex to link additional codes to the system whenever user-provided nonlin-
ear functions are to be processed. Whereas the main system functions are built in (e.g.
bounds on stresses, displacements, frequencies), it is often desirable to have the additional
option of defining arbitrary problem-dependent constraints or objective functions.

There exists meanwhile a large variety of different computer codes for automatic differ-
entiation, cf. Juedes (1991) for a review. They differ in the underlying design strategy, do-
main of application, mathematical method, implementation and numerical performance.
The code PCOMP to be introduced in this paper, is another member of this increasing
family of computer implementations. Whereas some general-purpose systems were devel-
oped to differentiate more or less arbitrary code given in higher programming languages,
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e.g. GRADIENT (Kedem (1980)), JAKEF (Hillstrom (1985)) or ADOL-C (Griewank,
Juedes, Srinivasan (1991)), PCOMP is a tool with a somewhat restricted language re-
lated to FORTRAN, but with emphasis on code flexibility and speed.

PCOMP proceeds from a subset of FORTRAN to define constants and expressions, and
possesses additional constructs to define arrays, sum and product expressions and function
sets over arbitrary index sets. This allows, for example, the declaration of constraints in
certain nodes in a finite element system. Since arbitrary external functions can be linked
to PCOMP, it is even possible to use symbolic expressions for externals, e.g. terms like
sigma(i) for describing the stress in a node i. Additional conditional statements like
goto, if, else and endif may control the execution.

The program PCOMP consists of three FORTRAN modules that can be implemented
independently from each other. One module scans and parses the input of data and
functions, respectively, and generates an intermediate code. This code can be used either
to compute function and gradient values and the second derivatives directly in the form of
subroutines, or to generate FORTRAN codes for function and gradient evaluation. Thus
PCOMP can be used in a very flexible way covering a large variety of possible applications,
particularly since all modules are written in standard FORTRAN 77.

Basically there are two ways to implement automatic differentiation, called forward
and backward accumulation respectively. Both are used in PCOMP and outlined in this
paper briefly. A particular advantage of gradient calculations in reverse accumulation
mode is the limitation of relative numerical effort by a constant that is independent of
the dimension, i.e. the number of variables.

A more general treatment of automatic differentiation is found in the books of Rall
(1981) and Kagiwada et al. (1986). A review of further literature and a more extensive
discussion of symbolic and automatic differentiation is given in Griewank (1989). An
up-to-date summary of related papers is published in Griewank and Corliss (1991). De-
tails about the mathematical background of PCOMP is found in Dobmann, Liepelt and
Schittkowski (1994), where also the results of some numerical experiments are reported.

In Section 2 of this paper, we describe the input format for data and functions that
is required to execute PCOMP. All allowed operations of the proposed language are de-
fined. Some examples are presented in Section 3. Program organization and use of the
FORTRAN subroutines is outlined in Section 4, which is particularly important for those
who want to implement PCOMP within their own software environment. Section 5 then
shows how user-provided external functions can be linked to PCOMP and called from the
underlying program. Two appendices contain a listing of the formal grammar and a list
of all error messages.
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2. Input Format

The symbolic input of nonlinear functions is only possible if certain syntax rules are
satisfied. The PCOMP-language is a subset of FORTRAN with a few extensions. In
particular the declaration and executable statements must satisfy the usual FORTRAN
input format, i.e. must start at column 7 or later. A statement line is read in until column
72. Comments beginning with C at the first column, may be included in a program
text wherever needed. Statements may be continued on subsequent lines by including
a continuation mark in the 6th column. Either capital or small letters are allowed for
identifiers of the user and key words of the language. The length of an identifier has to
be smaller than 20 tokens.

In contrast to FORTRAN, however, most variables are declared implicitly by their
assignment statements. Variables and functions must be declared separately only if they
are used for automatic differentiation. PCOMP possesses eleven special constructs to
identify program blocks.

* PARAMETER

Declaration of constant integer parameters to be used throughout the program,
particularly for dimensioning index sets.

* SET OF INDICES

Definition of index sets that can be used to declare data, variables and functions or
to define sum or prod statements.

* INDEX

Definition of an index variable, which can be used in a FUNCTION program block.

* REAL CONSTANT

Definition of real data, either without index or with one- or two-dimensional in-
dex. An index may be a variable or a constant number within an index set. Also
arithmetic expressions may be included.

* INTEGER CONSTANT

Definition of integer data, either without index or with one- or two-dimensional
index. An index may be a variable or a constant number within an index set. Also
arithmetic integer expressions may be included.

* TABLE <identifier>

Assignment of constant real numbers to one- or two-dimensional array elements. In
subsequent lines, one has to specify one or two indices followed by one real value
per line in a free format (starting at column 7 or later).
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* VARIABLE

Declaration of variables with up to one index, with respect to which automatic
differentiation is to be performed.

* CONINT <identifier>

Declaration of a piecewise constant interpolation function.

* LININT <identifier>

Declaration of a piecewise linear interpolation function.

* SPLINE <identifier>

Declaration of a spline interpolation function.

* MACRO <identifier>

Definition of a macro function, i.e. an arbitrary set of PCOMP statements that
define an auxiliary function to be inserted into subsequent function declaration
blocks. Macros are identified by a name that can be used in any right-hand side of
an assignment statement.

* FUNCTION <identifier>

Declaration of functions either with up to one index, for which function and deriva-
tive values are to be evaluated. The subsequent statements must assign a numerical
value to the function identifier.

* END

End of the program.

It is recommended to follow the order of the above program blocks. They may be
repeated whenever desirable. Data must be defined before their usage in a subsequent
block. All lines after the final END statement are ignored by PCOMP. The statements
within the program blocks are very similar to usual FORTRAN notation and must satisfy
the following guidelines:

Constant data: For defining real numbers either in analytical expressions or within the
special constant data definition block, the usual FORTRAN convention can be used.
In particular the F-, E- or D-format is allowed.

Identifier names: Names of identifiers, e.g. for variables and functions, index sets and
constant data, must begin with a letter and the number of characters, i.e. letters,
digits and underscores, must not exceed 20.

Index sets: Index sets are required for the SUM and PROD expressions and for defining
indexed data, variables and functions. They can be defined in different ways:
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1. Range of indices, e.g.

ind1 = 1..27

2. Set of indices, e.g.

ind2 = 3,1,17,27,20

3. Computed index sets, e.g.

ind3 = 5*i + 100 , i=1..n

4. Parameterized index sets, e.g.

ind4 = n..m

Assignment statements: As in FORTRAN, assignment statements are used to assign
a numerical value to an identifier, which may be either the name of the function that
is to be defined, or of an auxiliary variable that is used in subsequent expressions,
e.g.

r1 = x1*x4 + x2*x4 + x3*x2 - 11

r2 = x1 + 10*x2 - x3 + x4 + x2*x4*(x3 - x1)

f = r1**2 + r2**2

Analytical expressions: An analytical expression is, as in FORTRAN, any allowed
combination of constant data, identifiers, elementary or intrinsic arithmetic opera-
tions and the special SUM– and PROD–statements. Elementary operations are

+ , - , * , / , **

The exponential operator ** handles integer exponents in the same way as real ones,
i.e. one should prevent non-positive arguments. Available intrinsic functions are

ABS, SIN, COS, TAN, ASIN, ACOS, ATAN, SINH, COSH

TANH, ASINH, ACOSH, ATANH, EXP, LOG, LOG10, SQRT
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Alternatively, the corresponding double precision FORTRAN names possessing an
initial D can be used as well. Brackets are allowed to combine groups of operations.
Possible expressions are e.g.

5*DEXP(-z(i))

or

LOG(1 + SQRT(c1)*f1**2)

INDEX–Variables: In PCOMP it is possible to define indices separately to avoid unnec-
essary differentiation of integer variables. They have to be defined in the program
block INDEX, e.g.

* INDEX

i,j

l

It is allowed to manipulate the index e.g. by statements of the form

i = 1+2*4-3

i = a(1)

f = a(i+2)+i*2.0

f = SUM(a(m-i), m IN ind)

f = i

f = g(i)

In this case, a must be declared in form of in integer array. However the following
assignment statements are not allowed, if b is a real array:

i = b(3)

i = 1.0

i = 4/2

f(i) = 3.0

Interpolation functions: The built-in constant and linear interpolation functions CONINT
and LININT are scalar functions and are defined by their break points and corre-
sponding function values, e.g.
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* CONINT f

1.0 100.0

3.0 200.0

4.0 500.0

7.0 300.0

* LININT g

1.0 100.0

3.0 200.0

4.0 500.0

7.0 300.0

For the input of numerical values any format can be used (starting at column 7 or
later). The above declaration generates the following interpolation functions f and
g:

f(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.0 : x < 1.0
100.0 : 1.0 ≤ x < 3.0
200.0 : 3.0 ≤ x < 4.0
500.0 : 4.0 ≤ x < 7.0
300.0 : 7.0 ≤ x

g(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

100.0 : x < 1.0
100.0 + (x− 1.0) ∗ (200.0− 100.0)/(3.0− 1.0) : 1.0 ≤ x < 3.0
200.0 + (x− 3.0) ∗ (500.0− 200.0)/(4.0− 3.0) : 3.0 ≤ x < 4.0
500.0 + (x− 4.0) ∗ (300.0− 500.0)/(7.0− 4.0) : 4.0 ≤ x < 7.0

300.0 : 7.0 ≤ x

Within a function block, the interpolated function is treated like a FORTRAN func-
tion, i.e. has to contain a scalar variable or constant in brackets. The interpolation
functions are not differentiable at their break points. At these points PCOMP
generates the right-hand side differential quotient.

The built-in spline interpolation function SPLINE is also a scalar function and is
defined similar to CONINT and LININT, e.g.

* SPLINE h

-3.0 4.0

-1.0 -1.0

0.0 -2.0

2.0 4.0

3.0 0.0

7.0 -1.0
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10.0 -2.0

11.0 4.0

Because of the special definition of spline functions, at least four break points and
function values are required.

The spline functions generated, are twice differentiable with the exception of the
fourth break point. At this point there exists only the first derivative and PCOMP
generates the right-hand side differential quotient for the second derivative.

SUM– and PROD–expressions: Sums and products over predetermined index sets are for-
mulated by SUM and PROD expressions, where the corresponding index and the index
set must be specified, e.g. in the form

f = 100*PROD(x(i)**a(i), i IN inda)

In the above example, x(i) could be a variable vector defined by an index set, and
a(i) an array of constant data.

Control statements: To control the execution of a program, the conditional statements

IF 〈condition〉 THEN

〈statements〉
ENDIF

or

IF 〈condition〉 THEN

〈statements〉
ELSE

〈statements〉
ENDIF

can be inserted into a program. Conditions are defined as in FORTRAN by the
comparative operators .EQ., .NE., .LE., .LT., .GE., .GT., which can be combined
using brackets and the logical operators .AND., .OR. and .NOT..
The GOTO– and the CONTINUE–statements are further possibilities to control the
execution of a program. The syntax for these statements is
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GOTO 〈label〉

and

〈label〉 CONTINUE

where label has to be a number between 0 and 9999. Since PCOMP produces labels
during the generation of the FORTRAN code in the reverse mode, it is advisable
to use labels between 5000 and 9999. The <label> part of the CONTINUE-statement
has to be located between columns 2 and 5 of an input line. Together with an index,
the GOTO-statement can be used e.g. to simulate DO-loops, which are forbidden in
PCOMP, e.g.

i = 1

s = 0.0

6000 CONTINUE

s = s + a(i)*b(i)

i = i+1

IF (i.LE.n) THEN

GOTO 6000

ENDIF

Whenever indices are used within arithmetic expressions, it is allowed to insert poly-
nomial expressions of indices from a given set. However, functions must be treated in
a particular way. Since the design goal is to generate short, efficient FORTRAN codes,
indexed function names can be used only in exactly the same way as defined. In other
words, if a set of functions is declared e.g. by

* FUNCTION f(i), i IN index

then only an access to f(i) is allowed, not to f(1) or f(j), for example. In other words,
PCOMP does not extend the indexed functions to a sequence of single expressions similar
to the treatment of SUM and PROD statements.

In PCOMP it is allowed to pass variable values from one function block to the other.
However the user must be aware of a possible failure, if in the calling program the evalu-
ation of a gradient value in the first block is skipped.

One should be very careful when using the conditional statement IF. Possible traps
that prevent a correct differentiation are reported in Fischer (1991), and are to be illus-
trated by an example. Consider the function f(x) = x2 for n = 1. A syntactically correct
formulation would be:
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IF (x.EQ.1) THEN

f = 1

ELSE

f = x**2

ENDIF

In this case PCOMP would try to differentiate both branches of the conditional statement.
If x is equal to 1, the derivative value of f is 0; otherwise it is 2x. Obviously we get a wrong
answer for x = 1. This is a basic drawback for all automatic differentiation algorithms of
the type we are considering.

More examples in the form of complete PCOMP programs are listed in Section 3.
The complete formal grammar of the language is found in Appendix A, which should be
examined whenever the syntax is not clear from the examples presented. Syntax errors
are reported by the parser and are identified by an error number. A list of all possible
error messages is presented in Appendix B.
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3. Examples

The following examples illustrate typical applications of the PCOMP language. Most of
them have been used to describe mathematical optimization problems.

Example 1:

• Problem TP32 of Hock and Schittkowski (1981):

f(x) = (x1 + 3x2 + x3)
2 + 4(x1 − x2)

2

g1(x) = 6x2 + 4x3 − x3
1 − 3

g2(x) = 1− x1 − x2 − x3

The optimization problem consists of minimizing f(x) subject to the constraints
g1(x) ≥ 0 and g2(x) ≥ 0, and we may imagine that an algorithm is to be applied
that requires gradients of all problem functions.

• Variables:
(x1, x2, x3) = (0.1, 0.7, 0.2)

• PCOMP program:

c TP32

* VARIABLE

x1, x2, x3

* FUNCTION g1

g1 = 1.0 - x1 - x2 - x3

* FUNCTION g2

g2 = 6.0*x2 + 4.0*x3 - x1**3 - 3.0

* FUNCTION f

f = (x1 + 3.0*x2 + x3)**2 + 4.0*(x1 - x2)**2

* END

Example 2:
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• Exponential data fitting:

h(x, t) = x1x2x3 (
x4 − x2

z1
e−x2(t−τ) +

x4 − x3

z2
e−x3(t−τ)

+
x4 − x5

z3
e−x5(t−τ) +

x4 − x6

z4
e−x6(t−τ))

where

z1 = (x3 − x2)(x5 − x2)(x6 − x2)

z2 = (x2 − x3)(x5 − x3)(x6 − x3)

z3 = (x2 − x5)(x3 − x5)(x6 − x5)

z4 = (x2 − x6)(x3 − x6)(x5 − x6)

To avoid division by zero, we replace any of the zi-s by a small value, as soon as the
zi-value is below that tolerance.

The model function is quite typical for a broad class of practical application prob-
lems, which are denoted as nonlinear data fitting, parameter estimation or least
squares problems. Given a set of experimental data {ti} and {yi}, i = 1, ..., m, one
has to determine parameters x1,..., xn, so that the distance of the model function
and the experimental data is minimized in the L2-norm. More precisely we want to
minimize the expression

m∑
i=1

(h(x, ti)− yi)
2

over all x ∈ R
n.

In the subsequent PCOMP program, we have n = 7 and m = 14, where the data
sets {ti} and {yi} are given in the form of constants. The last variable plays the
role of a lag time and is called τ . Since typical nonlinear least squares codes require
the calculation of m individual function values instead of the sum of squares, the
PCOMP code is designed to computem function values of the form fi(x) = h(x, ti)−
yi, i = 1, ..., m.

• Variables:

(x1, ..., x6, τ) = (1.0, 3.4148, 1.33561, 0.3411, 1.0278, 0.05123, 0.2)

• PCOMP program:

c Exponential parameter estimation
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* PARAMETER

m = 14

* SET OF INDICES

indobs = 1..m

* REAL CONSTANT

eps = 1.D-12

t(i) = 0.1*i, i IN indobs

t(1) = 0.0

* TABLE y(i), i IN indobs

1 0.238

2 0.578

3 0.612

4 0.650

5 0.661

6 0.658

7 0.652

8 0.649

9 0.647

10 0.645

11 0.644

12 0.644

13 0.643

14 0.644

* VARIABLE

x1, x2, x3, x4, x5 , x6, tau

* FUNCTION f(i), i IN indobs

x42 = x4 - x2

x32 = x3 - x2

x52 = x5 - x2

x62 = x6 - x2

x43 = x4 - x3

x53 = x5 - x3

x63 = x6 - x3

x45 = x4 - x5

x65 = x6 - x5

x46 = x4 - x6

z1 = x32*x52*x62

IF (ABS(z1).LT.eps) THEN
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z1 = eps

ENDIF

z2 = -x32*x53*x63

IF (ABS(z2).LT.eps) THEN

z2 = eps

ENDIF

z3 = x52*x53*x65

IF (ABS(z3).LT.eps) THEN

z3 = eps

ENDIF

z4 = -x62*x63*x65

IF (ABS(z4).LT.eps) THEN

z4 = eps

ENDIF

f(i) = x1*x2*x3*

/ (x42/z1*DEXP(-x2*(t(i)-tau))

/ + x43/z2*DEXP(-x3*(t(i)-tau))

/ + x45/z3*DEXP(-x5*(t(i)-tau))

/ + x46/z4*DEXP(-x6*(t(i)-tau))) - y(i)

* END

Example 3:

• Problem TP295 of Schittkowski (1987b):

f(x) =
n−1∑
i=1

100(xi+1 − x2
i )

2 + (1− xi)
2

The optimization problem consists of minimizing f(x) with different dimensions n.
It is a generalization of the well-known banana function of Rosenbrock (1969) and
was used for testing PCOMP with varying dimensions.

• Variables:
(x1, ..., xn) = (−1.2, 1.0,−1.2, 1.0, ...)

• PCOMP program:

c TP295 (n=10)
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* SET OF INDICES

indn = 1..10

indnm1 = 1..9

* VARIABLE

x(i), i IN indn

* FUNCTION f

f = SUM(100*(x(i+1) - x(i)**2)**2 + (1 - x(i))**2, i IN indnm1)

* END

Example 4:

• Helmholtz energy function (Griewank (1989)):

f(x) = RT

n∑
i=1

xi log
xi

1− bTx
− xTAx√

8bTx
log

1 + (1 +
√
2)bTx

1 + (1−√
2)bTx

The above function was used by Griewank (1989) to test and illustrate symbolic
versus automatic differentiation on the one hand and the reverse and forward ac-
cumulation algorithms on the other. In our tests we let A be the Hilbert-matrix,
i.e. ai,j = 1

i+j−1
, i, j = 1, ..., n, where ai,j denotes an element of A, and we set

bi = 0.00001 for i = 1, ..., n, where bi is the i-th element of the vector b.

• Variables:
(x1, ..., xn) = (2.0, 2.0, ...)

• PCOMP program:

c Helmholtz energy function (n=10)

* SET OF INDICES

index = 1..10

* REAL CONSTANT

r = 8.314

t = 273.0

c1 = 1.0 + DSQRT(2.0)

c2 = 1.0 - DSQRT(2.0)
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c3 = DSQRT(8.0)

a(i,j)=1/(i+j-1), i IN index, j IN index

b(i)=0.00001, i IN index

* VARIABLE

x(I), i IN index

* FUNCTION f

bx = SUM(b(i)*x(i), i IN index)

xax = SUM(x(i)*SUM(a(i,j)*x(j), j IN index), i IN index)

f = r*t*SUM(x(i)*DLOG(x(i)/(1 - bx)), i IN index)

/ - xax*DLOG((1 + c1*bx)/(1 + c2*bx))/(c3*bx)

* END

Example 5:

• Dynamic system:

ẏ = −a0 exp(− ep
rT (t)

)yq0(t)

y0 = m0

yfit = y

Here we assume that we want to estimate parameters in an ordinary differential
equation with initial valuem0 and the fitting criterion yfit, that describes a chemical
reaction. The temparature T (t) is a piecewise linear interpolation function with
respect to the time variable t and q0(t) is obtained by solving a cubic equation that
depends on T (t).

• Variables:
(a0, ep, m0, y, t) = (2.0, 2.0, 2.0, 2.0, 2.0)

• PCOMP program:

c

c Mixed rate model

c

* REAL CONSTANT

n=3
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r=1.987

e=26920.0

k0=1.572E-11

ie=0.56779E-3

* VARIABLE

a0, ep, m0, y, t

* LININT TEMP

0.0 291.0

1200.0 316.0

1800.0 329.0

1980.0 333.0

2160.0 340.0

2280.0 350.0

2460.0 363.0

2640.0 367.0

3000.0 364.0

3390.0 362.0

* FUNCTION yp

kt = k0*DEXP(e/(r*temp(t)))

pt = 1/(3.0*n*kt)

qt = -ie/(2.0*n*kt)

rt = DSQRT(pt)

wt = -qt/rt**3

phi = DLOG(wt + DSQRT(wt**2 + 1.0))

q0 = 2.0*rt*DSINH(phi/3.0)

yp = -a0*DEXP(-ep/(r*temp(t)))*y*q0

* FUNCTION y0

y0 = m0

* FUNCTION yfit

yfit = y

C

C ... Fitting condition

C

C

* END

C
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4. Program Organization

The PCOMP system consists of three modules that can be executed completely inde-
pendently from each other. There are also some auxiliary routines, in particular an
error routine called SYMERR to make error messages readable, and a routine with the
name SYMPRP to read intermediate code generated by the parser. All routines are im-
plemented in FORTRAN77 and tested on the following systems: VAX/VMS, HP-UX,
MS-DOS (WATFOR, WATCOM, MS-FORTRAN, LAHEY).

(1) Parser:
The source code is analysed and compiled into an intermediate code, which can then
be processed by the other routines. The subroutine to be executed has the name
SYMINP. The syntax of the code is described in the form of a formal grammar, see
Appendix A. The parser was generated in C by the yacc-compiler-compiler of UNIX
and then transformed into FORTRAN by hand. The following files are needed to
link the parser:

PCOMP P1.FOR - parser routines
PCOMP P2.FOR - parser routines
PCOMP EV.FOR - numerical evaluation of analytical expressions used

- in index or constant declarations
PCOMP EX.FOR - external functions provided by the user
PCOMP ER.FOR - error messages

To give an example, we list a possible implementation:

parameter (lrsym=15000, lisym=15000)

double precision rsym(lrsym)

integer isym(lisym), larsym, laisym, ierr, lrow

integer nvar,nfunc

integer dbglev

open(2,file=’pcomp.fun’, status=’UNKNOWN’)

open(3,file=’pcomp.sym’, status=’UNKNOWN’)

open(4,file=’debug.fil’,status=’UNKNOWN’)

dbglev=3

call SYMINP(2,3,rsym,lrsym,isym,lisym,larsym,laisym,ierr,lrow,

F 1,nvar,nfunc,4,dbglev)

if (ierr.gt.0) goto 900

goto 9999

900 call SYMERR(ierr,lrow)

9999 continue

close(2)
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close(3)

close(4)

stop

end

(2) Evaluation of Function, Gradient and Hessian Matrix:
Proceeding from an intermediate code generated by SYMINP, the function and
derivative values are computed within subroutines called SYMFUN, SYMGRA and
SYMHES. They can be linked to any user program as required by the underlying
application. First and second derivatives are computed by forward accumulation
despite the drawbacks outlined in the previous sections, to reduce the size of internal
working arrays. The following program files are available and must be linked to the
code provided by the user:

PCOMP S.FOR - evaluation of function, gradient and Hessian ma-
trix

PCOMP EV.FOR - evaluation of expressions from given postfix nota-
tion

PCOMP EX.FOR - external functions provided by the user

PCOMP ER.FOR - error messages

In the next example, we illustrate a possible implementation of the routines for eval-
uating function and derivative values. We assume that the symbol file pcomp.sym
contains the intermediate code of one function with two variables.

implicit double precision(a-h,o-z)

parameter (nmax=30, mmax=20, lrsym=50000, lisym=10000)

dimension x(nmax), f(mmax), df(mmax,nmax),

/ ddf(mmax,nmax*nmax),irsym(lrsym),rsym(lisym)

logical act(mmax)

integer nvar,nfunc

integer dfx(nmax),dfxlen

open(3,file=’pcomp.sym’,status=’UNKNOWN’)

n=2

m=1

x(1)=1.0

x(2)=-1.2

act(1)=.true.

dfx(1)=1

dfx(2)=2

dfxlen=2

call SYMPRP(3,rsym,lrsym,isym,lisym,larsym,laisym,ierr,2,

F nvar,nfunc)
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if (ierr.gt.0) goto 900

call SYMFUN(x,n,f,m,act,rsym,lrsym,isym,lisym,dfx,dfxlen,ierr)

if (ierr.gt.0) goto 900

call SYMGRA(x,n,f,m,df,mmax,act,rsym,lrsym,isym,lisym,dfx,dfxlen,

F ierr)

if (ierr.gt.0) goto 900

call SYMHES(x,n,f,m,df,ddf,mmax,act,rsym,lrsym,isym,lisym,dfx,

F dfxlen,ierr)

if (ierr.gt.0) goto 900

write(*,*) f(1),df(1,1),df(1,2)

write(*,*) ddf(1,1),ddf(1,2),ddf(1,3),ddf(1,4)

goto 9999

900 call SYMERR(ierr,0)

9999 continue

close(3)

stop

end

(3) Generation of FORTRAN Code:
Proceeding from an intermediate code generated by SYMINP, FORTRAN subrou-
tines for function and gradient evaluation are generated. They can be compiled and
linked separately from the PCOMP system. Gradients are computed by reverse ac-
cumulation. There are two files to be linked to the user code, and the error routine
as before:

PCOMP G1.FOR - routines to generate FORTRAN code
PCOMP G2.FOR - routines to generate FORTRAN code
PCOMP ER.FOR - error messages

parameter (lrsym=15000, lisym=15000)

double precision rsym(lrsym)

integer isym(lisym), larsym, laisym, ierr, lrow,nvar,nfunc

open(3,file=’pcomp.sym’, status=’UNKNOWN’)

open(4,file=’pcomp.for’, status=’UNKNOWN’)

call SYMPRP(3,rsym,lrsym,isym,lisym,larsym,laisym,ierr,1,

F nvar,nfunc)

if (ierr.gt.0) goto 900

call SYMFOR(4,rsym,lrsym,isym,lisym,ierr)

if (ierr.gt.0) goto 900

goto 9999

900 call SYMERR(ierr,0)

9999 continue

close(3)

close(4)
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stop

end

Documentation of all subroutines within the files mentioned is given by Dobmann
(1993), Liepelt (1990) and Trassl (1993) together with some additional information on the
data structures. In the remainder of this section, we describe only the use of subroutines
that can be called from a user program.

Subroutine SYMINP:

• Purpose:
The subroutine compiles symbolically defined nonlinear functions and generates an
intermediate code.

• Calling sequence:
SYMINP (INPUT,SYMFIL,WA,LWA,IWA,LIWA,UWA,UIWA,IERR,LNUM,

MODE,NVAR,NFUNC,DEBFIL,LEVDEB)

• Parameters:

INPUT - When calling SYMINP, the integer value of INPUT is the
number of the file that contains the program text.

SYMFIL - An integer identifying the output file number to which the
intermediate code is to be written. If SYMFIL is set to
zero when calling SYMINP, then only the working arrays
are filled with the intermediate program code.

WA(LWA) - Double precision working array of length LWA used inter-
nally to store and process data. When leaving SYMINP,
WA contains the generated intermediate code in its first
UWA positions.

LWA - Length of the working array WA. LWA must be sufficiently
large depending on the code size.

IWA(LIWA) - Integer working array of length LIWA. On return, IWA
contains the integer part of the intermediate code in its
first UIWA positions.
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LIWA - Length of the working array IWA. LIWA must be suffi-
ciently large depending on the code size.

UWA,UIWA - Storage actually needed for the intermediate code in the
form of integers.

IERR - On return, IERR shows the termination reason of
SYMINP:
IERR = 0 : Successful termination.
IERR > 0 : There is a syntax error in the input file.

In the latter case, call SYMERR for more information.

LNUM - In case of unsuccessful termination, LNUM contains the
line number where the error was detected.

MODE - MODE = 0 : WA is supposed to supply sufficient working
space to store function values.

- MODE = 1 : WA is supposed to supply sufficient work-
ing space to store function values and corresponding first
derivatives.

- MODE = 2 : WA is supposed to supply sufficient working
space to store function values and corresponding first and
second derivatives.

NVAR - On return, NVAR contains the number of variables of the
INPUT file

NFUNC - On return, NFUNC contains the number of functions of
the INPUT file

DEBFIL - An integer identifying the output file number to which de-
bug information is to be written, if required the parameter
LEVDEB.

LEVDEB - When calling SYMINP, LEVDEB has to contain the de-
sired debugging level:

LEVDEB = 0 : No debugging information generated.

LEVDEB = 1 : Debug information generated by scanner.

LEVDEB = 2 : Debug information generated by parser.

LEVDEB = 3 : Full debug information generated.

Subroutine SYMERR:

• Purpose:
Proceeding from an error code IERR (> 0) and, if available from a SYMINP call, a
line number, SYMERR generates an output message on the standard device.
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• Calling sequence:
SYMERR (LNUM,IERR)

• Parameters:

LNUM - When calling SYMERR after a SYMINP execution, LNUM
has to contain the corresponding line number value as de-
termined by SYMINP.

IERR - The numerical value of the termination reason is to be in-
serted when calling SYMERR.

Subroutine SYMPRP:

• Purpose:
The subroutine reads intermediate code from a file generated by a SYMINP call
and fills two working arrays with the code for further processing within subroutines
SYMFUN, SYMGRA and SYMFOR.

• Calling sequence:
SYMPRP (SYMFIL,WA,LWA,IWA,LIWA,UWA,UIWA,IERR,MODE,

NVAR,NFUNC)

• Parameters:

SYMFIL - An integer identifying the input file number, which contains
the intermediate code generated by SYMINP.

WA(LWA) - Double precision working array of length LWA that con-
tains the intermediate code in its first UWA positions when
leaving SYMPRP.

LWA - Length of the working array WA. LWA must be at least
UWA as determined by SYMINP.

IWA(LIWA) - Integer working array of length LIWA. On return, IWA
contains the integer part of the intermediate code in its
first UIWA positions.
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LIWA - Length of the working array IWA. LIWA must be at least
UIWA as determined by SYMINP.

UWA,UIWA - Storage actually needed for the intermediate code in WA
and IWA.

IERR - On return, IERR shows the termination reason of SYM-
PRP:
IERR = 0 : Successful termination.
IERR > 0 : There is an error in the input file.

In the latter case, call SYMERR for more information.

MODE - MODE = 0 : WA is tested for sufficient space to store
function values.

- MODE = 1 : WA is tested for sufficient space to store
function values and corresponding first derivatives.

- MODE = 2 : WA is tested for sufficient space to store func-
tion values and corresponding first and second derivatives.

NVAR - On return, NVAR contains the number of variables of the
INPUT file

NFUNC - On return, NFUNC contains the number of functions of
the INPUT file

Subroutine SYMFUN:

• Purpose:
The intermediate code is passed from a SYMINP call to SYMFUN in form of a real
and an integer working array. Given any variable vector x, the subroutine computes
the corresponding function values fi(x). The functions that are to be evaluated by
SYMFUN must be specified by a logical array.

• Calling sequence:
SYMFUN (X,N,F,M,ACTIVE,WA,LWA,IWA,LIWA,DFX,DFXLEN,IERR)

• Parameters:

X(N) - Double precision array of length N that contains the vari-
able values for which functions are to be evaluated.
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N - Dimension, i.e. number of variables.

F(M) - Double precision array of length M to pass the function
values computed by SYMFUN to the user program.

M - Total number of functions on the input file.

ACTIVE(M) - Logical array of length M that determines the functions
to be evaluated. ACTIVE must be set by the user when
calling SYMFUN:

ACTIVE(J)=.TRUE. : Compute function gj(x).

ACTIVE(J)=.FALSE. : Do not compute gj(x).

WA(LWA) - Double precision working array of length LWA that con-
tains the intermediate code in its first UWA positions.

LWA - Length of the working array WA. LWA must be at least
UWA as determined by SYMINP.

IWA(LIWA) - Integer working array of length LIWA. IWA contains the
integer part of the intermediate code in its first UIWA po-
sitions.

LIWA - Length of the working array IWA. LIWA must be at least
UIWA as determined by SYMINP.

DFX - Array for the evaluating function EVAL.

DFXLEN - Length of the array DFX.

IERR - On return, IERR shows the termination reason of SYM-
FUN:
IERR = 0 : Successful termination.
IERR > 0 : There is an error in the input file.

In the latter case, call SYMERR for more information.

Subroutine SYMGRA:

• Purpose:
The intermediate code is passed from a SYMINP call to SYMGRA in the form
of a real and an integer working array. Given a variable vector x, the subroutine
computes the corresponding function and gradient values fi(x) and ∇fi(x). The
functions and gradients that are to be evaluated by SYMGRA must be specified by
a logical array.

• Calling sequence:
SYMGRA (X,N,F,M,DF,MMAX,ACTIVE,WA,LWA,IWA,LIWA,DFX,

DFXLEN,IERR)

• Parameters:
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X(N) - Double precision array of length N that contains the
variable values for which functions and gradients are to
be evaluated.

N - Dimension, i.e. number of variables.

F(M) - Double precision array of length M to pass the function
values computed by SYMGRA to the user program.

M - Total number of functions on the input file.

DF(MMAX,N) - Two-dimensional double precision array to take over the
gradients computed by SYMGRA. The row dimension
must be MMAX in the driving routine.

MMAX - Row dimension of DF. MMAX must not be smaller than
M.

ACTIVE(M) - Logical array of length M that determines the functions
and gradients to be evaluated. ACTIVE must be set by
the user when calling SYMGRA:

ACTIVE(J)=.TRUE. : Compute function gj(x).

ACTIVE(J)=.FALSE. : Do not compute gj(x).

WA(LWA) - Double precision working array of length LWA that con-
tains the intermediate code in its first UWA positions.

LWA - Length of the working array WA. LWA must be at least
UWA as determined by SYMINP.

IWA(LIWA) - Integer working array of length LIWA. IWA contains the
integer part of the intermediate code in its first UIWA
positions.

LIWA - Length of the working array IWA. LIWA must be at
least UIWA as determined by SYMINP.

DFX(DFXLEN) - INTEGER-array of length DFXLEN that contains the
numbers of the variables for which the first derivatives
are to be evaluated.

DFXLEN - Lenght of the vector DFX.

IERR - On return, IERR shows the termination reason of SYM-
GRA:
IERR = 0 : Successful termination.
IERR > 0 : There is an error in the input file.
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Call SYMERR for more information.

Subroutine SYMHES:

• Purpose:
The intermediate code is passed from a SYMINP call to SYMHES in the form of a
real and an integer working array. Given a variable vector x, the subroutine com-
putes the corresponding function and derivative values fi(x), ∇fi(x) and ∇2fi(x).
The functions, gradients and hessian matrices that are to be evaluated by SYMHES
must be specified by a logical array.

• Calling sequence:
SYMHES (X,N,F,M,DF,DDF,MMAX,ACTIVE,WA,LWA,IWA,LIWA,DFX

DFXLEN,IERR)

• Parameters:

X(N) - Double precision array of length N that contains the
variable values for which functions and gradients are
to be evaluated.

N - Dimension, i.e. number of variables.

F(M) - Double precision array of length M to pass the func-
tion values computed by SYMGRA to the user pro-
gram.

M - Total number of functions on the input file.

DF(MMAX,N) - Two-dimensional double precision array to take over
the gradients computed by SYMGRA. The row di-
mension must be MMAX in the driving routine.

DDF(MMAX,N∗N) - Two-dimensional double precision array to i take
over the values of the Hessian matrix computed by
SYMHES. The row dimension must be MMAX in
the driving routine.

MMAX - Row dimension of DF. MMAX must not be smaller
than M.
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ACTIVE(M) - Logical array of length M that determines the func-
tions and gradients to be evaluated. ACTIVE must
be set by the user when calling SYMGRA:

ACTIVE(J)=.TRUE. : Compute function gj(x).

ACTIVE(J)=.FALSE. : Do not compute gj(x).

WA(LWA) - Double precision working array of length LWA that
contains the intermediate code in its first UWA posi-
tions.

LWA - Length of the working array WA. LWA must be at
least UWA as determined by SYMINP.

IWA(LIWA) - Integer working array of length LIWA. IWA contains
the integer part of the intermediate code in its first
UIWA positions.

LIWA - Length of the working array IWA. LIWA must be at
least UIWA as determined by SYMINP.

DFX(DFXLEN) - INTEGER-array of length DFXLEN that contains
the numbers of the variables for which the first and
second derivatives are to be evaluated.

DFXLEN - Lenght of the vector DFX.

IERR - On return, IERR shows the termination reason of
SYMHES:
IERR = 0 : Successful termination.
IERR > 0 : There is an error in the input file.

Call SYMERR for more information.

Subroutine SYMFOR:

• Purpose:
The intermediate code is passed from a SYMINP call to SYMFOR in the form of
a real and an integer working array. Then SYMFOR generates two subroutines for
function and gradient evaluation on a given output file. The calling sequences of
the generated subroutines are

XFUN (X,N,F,M,ACTIVE,IERR)

and

XGRA (X,N,F,M,DF,MMAX,ACTIVE,IERR),

where the meaning of the parameters is the same as for SYMFUN and SYMGRA,
respectively.
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• Calling sequence:
SYMFOR (XFIL,WA,LWA,IWA,LIWA,IERR)

• Parameters:

XFIL - An integer containing the number of the file on which the
codes are to be written.

WA(LWA) - Double precision working array of length LWA that con-
tains the intermediate code in its first UWA positions when
calling SYMFOR and additional storage that is required by
SYMFOR.

LWA - Length of the working array WA.

IWA(LIWA) - Integer working array of length LIWA. IWA contains the
integer part of the intermediate code in its first UIWA po-
sitions when calling SYMFOR, and is needed for additional
working space.

LIWA - Length of the working array IWA.

IERR - On return, IERR shows the termination reason of SYM-
FOR:
IERR = 0 : Successful termination.
IERR > 0 : There is an error in the input file.

in hte latter case, call SYMERR for more information.
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5. Inclusion of External Functions

For the practical use of PCOMP, it is extremely important to have the possibility of
defining an interface between PCOMP and the user system. In the frame of a mechanical
structural optimization system, for example, one might wish to include expressions of the
form sigma(i) in the PCOMP program to identify the stress at a node i. Other examples
are the evaluation of inner products or the input of data from a file or a user program.

To include external functions in PCOMP, the following alterations are required:

• Change the number of external functions MAXEXT in subroutines YYPAR, EVAL,
REVCDE, FORCDE, FORDF and KEYWD.

• Insert the function names used in the source code, in the array EXTNAM. The
subroutine to be altered is KEYWD.

• Define the number of additional integer parameters of the functions to be defined, in
the array EXTTYP. The array is found in subroutines YYPAR, EVAL, REVCDE,
FORCDE and FORDF.

• Implement subroutines that evaluate function and derivative and insert their calling
sequences in subroutines EXTFUN, EXTGRA and EXTHES.

A user can change the module system provided by the authors. The interface functions
EXTFUN, EXTGRA and EXTHES are executed within PCOMP in the following way:

Subroutine EXTFUN:

• Purpose:
Calling user-provided subroutines to evaluate function values that correspond to
symbolic names in a source program.

• Calling sequence:
EXTFUN (EXT,X,N,F,EXTPAR)

• Parameters:
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EXT - Integer value to identify the EXT-th external function
value to be computed. The order coincides with the or-
der of the symbolic names in the array EXTNAM.

X(N) - Double precision array of length N that contains the vari-
able values for which an external function is to be evalu-
ated.

N - Dimension, i.e. number of variables.

F - Double precision variable to take over the value of the func-
tion on return.

EXTPAR(2) - Integer array of length two containing up to two actual
parameters when calling EXTFUN.

Subroutine EXTGRA:

• Purpose:
Calling user-provided subroutines to evaluate gradient values that correspond to
symbolically defined functions in a source program.

• Calling sequence:
EXTGRA (EXT,X,N,DF,EXTPAR)

• Parameters:

EXT - Integer value to identify the EXT-th external function for
which the gradient is to be computed. The order coin-
cides with the order of the symbolic names in the array
EXTNAM.

X(N) - Double precision array of length N that contains the vari-
able values for which an external gradient is to be evalu-
ated.

N - Dimension, i.e. number of variables.

DF(N) - Double precision array of length N to take over the gradient
value of function EXT on return.

EXTPAR(2) - Integer array of length two containing up to two actual
parameters when calling EXTFUN.
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Subroutine EXTHES:

• Purpose:
Calling user-provided subroutines to evaluate the values of the second derivatives
that correspond to symbolically defined functions in a source program.

• Calling sequence:
EXTHES (EXT,X,N,DDF,EXTPAR)

• Parameters:

EXT - Integer value to identify the EXT-th external function for
which the Hessian matrix is to be computed. The order
coincides with the order of the symbolic names in the array
EXTNAM.

X(N) - Double precision array of length N that contains the vari-
able values for which an external Hessian matrix is to be
evaluated.

N - Dimension, i.e. number of variables.

DDF(N∗N) - Double precision array of length N∗N to take over the sec-
ond derivative values of function EXT on return.

EXTPAR(2) - Integer array of length two containing up to two actual
parameters when calling EXTFUN.

Example 6:

• Helmholtz energy function (Griewank (1989)):

f(x) = RT

n∑
i=1

xi log
xi

1− bTx
− xTAx√

8bTx
log

1 + (1 +
√
2)bTx

1 + (1−√
2)bTx

We consider again the Helmholtz energy function that was also programmed in the
PCOMP language in Section 4, Example 4. By investigating that code in detail,
we observe immediately that some operations could be performed much faster ’in
core’, in particular inner products. Moreover certain intermediate data could be
passed to the derivation evaluation, if we assume that a function evaluation always
preceeds a derivation evaluation. The following PCOMP program contains four
external functions, where there is still an inner product in the PCOMP code that
could be eliminated as well. It is left for demonstration purposes.
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• Variables:
(x1, ..., xn) = (2.0, 2.0, ...)

• PCOMP program:

c Helmholtz function with externals (n=10)

* PARAMETER

n = 10

* SET OF INDICES

index = 1..n

* REAL CONSTANT

r = 8.314

t = 273.0

c1 = 1.0 + DSQRT(2.0)

c2 = 1.0 - DSQRT(2.0)

c3 = DSQRT(8.0)

* VARIABLE

x(i), i IN index

* FUNCTION f

xax = SUM(x(i)*ax(i), i IN index)

f = r*t*(xlogx - DLOG(1 - bx)*x1) -

/ xax*DLOG((1 + c1*bx)/(1 + c2*bx))/(c3*bx)

* END

• External subroutines:

subroutine EXTFUN (ext,x,n,f,extpar)

integer ext, n, extpar(2)

double precision x(n), f

goto (1,2,3,4) ext

1 call AX(x, n, f, extpar(1))

return

2 call BX(x, n, f)

return

3 call XLOGX(x, n, f)

return
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4 call X1(x, n, f)

return

end

subroutine EXTGRA (ext, x, n, df, extpar)

integer ext, n, extpar(2)

double precision x(n), df(n)

goto (1,2,3,4) ext

1 call DAX(x, n, df, extpar(1))

return

2 call DBX(x ,n ,df)

return

3 call DXLOGX(x ,n ,df)

return

4 call DX1(x, n, df)

return

end

subroutine EXTHES (ext, x, n, ddf, extpar)

integer ext, n, extpar(2)

double precision x(n), df(n)

goto (1,2,3,4) ext

1 call HAX(x, n, ddf, extpar(1))

return

2 call HBX(x ,n ,ddf)

return

3 call HXLOGX(x ,n ,ddf)

return

4 call HX1(x, n, ddf)

return

end

subroutine AX (x, n, f, i)

double precision x(n), f, a, b

f=0.0

do 1 j=1,n

1 f=f + 1.0/dble(i+j-1)*x(j)

return

end

subroutine DAX (x, n, df, i)

double precision x(n), df(n), a, b

do 1 j=1,n

1 df(j)=1.0/dble(i+j-1)
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return

end

subroutine HAX (x, n, ddf, i)

double precision x(n), ddf(n*n), a, b

do 1 j=1,n*n

1 ddf(j)=0.0D0

return

end

subroutine BX (x, n, f)

double precision x(n), f, a, b

f=0.0

do 1 j=1,n

1 f=f + 0.00001*x(j)

return

end

subroutine DBX (x, n, df)

double precision x(n), df(n), a, b

do 1 j=1,n

1 df(j)=0.00001

return

end

subroutine HBX (x, n, ddf)

double precision x(n), ddf(n*n), a, b

do 1 j=1,n*n

1 ddf(j)=0.0D0

return

end

subroutine XLOGX (x, n, f)

double precision x(n), f, logx

common /extlog/ logx(100)

f=0.0

do 1 j=1,n

logx(j)=dlog(x(j))

1 f=f + x(j)*logx(j)

return

end

subroutine DXLOGX (x, n, df)

double precision x(n), df(n), logx
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common /extlog/ logx(100)

do 1 j=1,n

1 df(j)=logx(j) + 1.0

return

end

subroutine HXLOGX (x, n, ddf)

double precision x(n), ddf(n*n), logx

do 1 j=1,n*n

1 ddf(j)=0.0D0

do 2 j=1,n

2 ddf(j*j)=1.0/x(j)

return

end

subroutine X1 (x, n, f)

double precision x(n), f

f=0.0

do 1 j=1,n

1 f=f + x(j)

return

end

subroutine DX1 (x, n, df)

double precision x(n), df(n)

do 1 j=1,n

1 df(j)=1.0

return

end

subroutine HX1 (x, n, ddf)

double precision x(n), ddf(n*n)

do 1 j=1,n*n

1 ddf(j)=0.0D0

return

end
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APPENDIX A: Formal Grammar

The syntax of PCOMP is based on a formal language that is listed below. The input
format was chosen according to the requirements of the yacc-compiler-compiler of UNIX.
The C code generated by yacc was translated into FORTRAN by hand.

%{

#include <ctype.h>

#include <stdio.h>

%}

%token RANGE, RELOP, AND, OR, NOT, INUM, RNUM, ID, SUM, PROD, IN

%token IF, THEN, ELSE, ENDIF, STANDARD, EXTERN,INTERPOL

%token PARAM, INDEX, REAL, INT, TABLE, CONINT, LININT, SPLINE, VAR

%token INFUNC, FUNC, END, GOTO, LABEL, CONTINUE

%left OR

%left AND

%left NOT

%nonassoc RELOP

%left ’+’ ’-’

%left ’*’ ’/’

%left UMINUS

%right ’^’

%%

module : declaration_blocks end_module {};

declaration_blocks : declaration_blocks declaration_block

| ;

declaration_block : param_head param_declarations

| index_head index_declarations

| real_head real_declarations

| integer_head integer_declarations

| table_head table_declarations

| con_interpolation_head interpolation_declarations

| lin_interpolation_head interpolation_declarations

| spl_interpolation_head spline_declarations

| variable_head variable_declarations

| infunc_head infunc_declarations

| function_head stmts {};

param_head : PARAM ’\n’;

param_declarations : param_declarations param_declaration

| ;

param_declaration : ID ’=’ INUM ’\n’ {};
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index_head : INDEX ’\n’;

index_declarations : index_declarations index_declaration

| ;

index_declaration : ID ’=’ index_delimiter RANGE index_delimiter ’\n’ {}

| ID ’=’ INUM ’,’ INUM {} opt_inum ’\n’

| ID ’=’ ind_expr ’,’ ID ’=’ index_delimiter

RANGE index_delimiter ’\n’ {}

index_delimiter : ID {}

| INUM

opt_inum : opt_inum ’,’ INUM {}

| ;

ind_expr : ind_expr ’+’ ind_expr {}

| ind_expr ’-’ ind_expr {}

| ind_expr ’*’ ind_expr {}

| ind_expr ’/’ ind_expr {}

| ’(’ ind_expr ’)’

| ’-’ ind_expr %prec UMINUS {}

| INUM {}

| ID {};

real_head : REAL ’\n’;

real_declarations : real_declarations real_declaration

| ;

real_declaration : ID ’=’ expr ’\n’ {}

| ID ’(’ ID ’)’ ’=’ expr ’,’ ID IN ID ’\n’ {}

| ID ’(’ INUM ’)’ ’=’ expr ’\n’ {}

| ID ’(’ ID ’,’ ID ’)’ ’=’ expr ’,’

ID IN ID ’,’ ID IN ID ’\n’ {}

| ID ’(’ INUM ’,’ INUM ’)’ ’=’ expr ’\n’ {};

integer_head : INT ’\n’;

integer_declarations : integer_declarations integer_declaration

| ;

integer_declaration : ID ’=’ expr ’\n’ {}

| ID ’(’ ID ’)’ ’=’ expr ’,’ ID IN ID ’\n’ {}

| ID ’(’ INUM ’)’ ’=’ expr ’\n’ {}

| ID ’(’ ID ’,’ ID ’)’ ’=’ expr ’,’

ID IN ID ’,’ ID IN ID ’\n’ {};

| ID ’(’ INUM ’,’ INUM ’)’ ’=’ expr ’\n’ {};

table_head : TABLE ID ’(’ ID ’)’ ’,’ ID IN ID ’\n’ {}

| TABLE ID ’(’ ID ’,’ ID ’)’ ’,’ ID IN ID ’,’ ID IN ID ’\n’ {};

table_declarations : table_declarations table_declaration

| ;

table_declaration : INUM RNUM ’\n’ {}

| INUM ’-’ RNUM ’\n’ {}

| INUM INUM RNUM ’\n’ {}
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| INUM INUM ’-’ RNUM ’\n’ {};

con_interpolation_head : CONINT ID ’\n’ {};

lin_interpolation_head : LININT ID ’\n’ {};

interpolation_declarations : interpolation_declarations

interpolation_declaration

| ;

interpolation_declaration : RNUM RNUM ’\n’ {}

| RNUM ’-’ RNUM ’\n’ {}

| ’-’ RNUM RNUM ’\n’ {}

| ’-’ RNUM ’-’ RNUM ’\n’ {};

variable_head : VAR ’\n’;

variable_declarations : variable_declarations variable_declaration

| ;

variable_declaration : ID ’(’ ID ’)’ ’,’ ID IN ID ’\n’ {}

| ID opt_id ’\n’ {};

opt_id : opt_id ’,’ ID {}

| {};

infunc_head : INFUNC ’\n’ {};

infunc_declarations : infunc_declarations infunc_declaration

| ;

infunc_declaration : ID opt_id ’\n’ {};

function_head : FUNC ID ’\n’ {}

| FUNC ID ’(’ ID ’)’ ’,’ ID IN ID ’\n’ {};

stmts : stmts stmt

| ;

stmt : ID ’=’ expr ’\n’ {}

| ID ’(’ ID ’)’ ’=’ expr ’\n’ {}

| IF {} ’(’ logic_expr ’)’ {} THEN ’\n’

stmts {} opt_else_if opt_else ENDIF ’\n’ {}

| LABEL CONTINUE ’\n’ {}

| GOTO INUM ’\n’ {};

opt_else_if : opt_else_if ELSE IF ’(’ logic_expr ’)’ {}

THEN ’\n’ stmts {}

| ;

opt_else : ELSE ’\n’ stmts

| {};

expr : expr ’+’ expr {}

| expr ’-’ expr {}

| expr ’*’ expr {}

| expr ’/’ expr {}

| expr ’^’ expr {}

| ’(’ expr ’)’

| ’-’ expr %prec UMINUS {}

| number

40



| identifier

| standard_function

| extern_function

| interpolation_function

| SUM {} ’(’ expr ’,’ ID IN ID ’)’ {}

| PROD {} ’(’ expr ’,’ ID IN ID ’)’ {};

logic_expr : logic_expr AND logic_expr {}

| logic_expr OR logic_expr {}

| NOT logic_expr {}

| ’(’ logic_expr ’)’

| expr RELOP expr {};

number : RNUM {}

| INUM {};

identifier : ID {}

| ID ’(’ ind_expr ’)’ {}

| ID ’(’ ind_expr ’,’ ind_expr ’)’ {};

standard_function : STANDARD {}

| STANDARD ’(’ expr ’)’ {}

| STANDARD ’(’ expr ’,’ expr ’)’ {};

extern_function : EXTERN {}

| EXTERN ’(’ ind_expr ’)’ {}

| EXTERN ’(’ ind_expr ’,’ ind_expr ’)’ {};

interpolation_function : INTERPOL ’(’ expr ’)’ {};

spl_interpolation_head : SPLINE ID ’\n’ {};

spline_declarations : spline_declarations

spline_declaration

| ;

spline_declaration : RNUM RNUM ’\n’ {}

| RNUM ’-’ RNUM ’\n’ {}

| ’-’ RNUM RNUM ’\n’ {}

| ’-’ RNUM ’-’ RNUM ’\n’ {};

end_module : END ’\n’;

%%
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APPENDIX B: Error Messages

PCOMP reports error messages in the form of integer values of the variable IERR and,
whenever possible, also line numbers LNUM. The meaning of the messages is listed in
the following table. Note that the corresponding text is displayed if the error routine
SYMERR is called with the parameters LNUM and IERR.

1 - file not found - no compilation

2 - file too long - no compilation

3 - identifier expected

4 - multiple definition of identifier

5 - comma expected

6 - left bracket expected

7 - identifier not declared
8 - data types do not fit together

9 - division by zero

10 - constant expected

11 - operator expected

12 - unexpected end of file

13 - range operator ’..’ expected

14 - right bracket ’)’ expected

15 - ’THEN’ expected

16 - ’ELSE’ expected

17 - ’ENDIF’ expected

18 - ’THEN’ without corresponding ’IF’

19 - ’ELSE’ without corresponding ’IF’

20 - ’ENDIF’ without corresponding ’IF’

21 - assignment operator ’=’ expected

22 - wrong format for integer number

23 - wrong format for real number

24 - formula too complicated

25 - error in arithmetic expression

26 - internal compiler error

27 - identifier not valid
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28 - unknown type identifier

29 - wrong input sign

30 - stack overflow of parser

31 - syntax error

32 - available memory exceeded

33 - index or index set not allowed
34 - error during dynamic storage allocation

35 - wrong number of indices

36 - wrong number of arguments

43 - number of variables different from declaration
44 - number of functions different from declaration
45 - END - sign not allowed

46 - FORTRAN code exceeds line
47 - feature not yet supported

48 - bad input format

49 - length of working array IWA too small

50 - length of working array WA too small

51 - ATANH: domain error
52 - LOG: domain error
53 - SQRT: domain error

54 - ASIN: domain error
55 - ACOS: domain error
56 - ACOSH: domain error
57 - LABEL defined more than once
58 - LABEL not found
59 - wrong index expression

60 - wrong call of the subroutine SYMINP

61 - wrong call of the subroutine SYMPRP

62 - compilation of the source file in GRAD-mode

63 - interpolation values not in right order

64 - not enough space for interpolation functions in subroutine REVCDE

65 - length of working array IWA in subroutine SYMFOR too small

66 - not enough interpolation values

67 - compilation of source file not in GRAD-mode

68 - missing macro name

69 - more than MAXMAC macros defined
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70 - more than MAXBUF lines of macro statements
71 - more than MAXBUF statements in function
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