
QL: A Fortran Code for Convex

Quadratic Programming

- User’s Guide -

K. Schittkowski

Address: Prof. K. Schittkowski
Siedlerstr. 3
D - 95488 Eckersdorf
Germany

Phone: (+49) 921 32887

E-mail: klaus@schittkowski.de

Web: http://www.klaus-schittkowski.de

Date: February, 2011

Abstract

The Fortran subroutine QL solves strictly convex quadratic programming problems
subject to linear equality and inequality constraints by the primal-dual method of
Goldfarb and Idnani. An available Cholesky decomposition of the objective function
matrix can be provided by the user. Bounds are handled separately. The code is
designed for solving small-scale quadratic programs in a numerically stable way. Its
usage is outlined and an illustrative example is presented.

Keywords: quadratic optimization, QP, quadratic programming, numerical algorithms, For-
tran codes

1

1 Introduction

The code solves the strictly convex quadratic program

min 1
2
xT Cx + dT x

aT
j x + bj = 0 , j = 1, . . . , me , (1)

x ∈ IRn : aT
j x + bj ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu

with an n by n positive definite matrix C, an n-dimensional vector d, an m by n matrix
A = (a1, ..., am)T , and an m-vector b. Lower and upper bounds for the variables, xl and xu,
respectively, are separately handled.

The quadratic program (1) is solved by the primal-dual method of Goldfarb and Id-
nani [2]. Initially, a Cholesky decomposition of C is computed by an upper triangular
matrix R such that C = RT R. If available, a user can provide a known triangular factor.
In case of numerical instabilities, e.g. round-off errors, or a semi-definite matrix C, a cer-
tain multiple of the unit matrix is added to C to get a positive definite matrix for which a
Cholesky decomposition can be obtained.

Successively, violated constraints are added to an active set until a solution is obtained. In
each step, the minimizer of the objective function subject to the new active set is computed.
If an iterate satisfies all linear constraints and bounds, the optimal solution is obtained and
the the algorithm terminates. If necessary, a constraint can be dropped from the working
set if no longer considered as an active one.

The corresponding matrix manipulations to compute the successive minimizers subject to
active constraints are performed in a numerically stable way by orthogonal Givens rotations.
Since objective function values are strictly increasing from one iteration to the next and since
the number of possible active sets is finite, the algorithm terminates after finitely many steps.

A particular advantage of a dual method is that the phase I of a primal algorithm,
i.e., the computation of an initial feasible point satisfying all linear constraints and bounds,
can be avoided. A generalization of the method introduced in this section, is published by
Boland [1] for the case that C is positive semi-definite.

The implementation of the code goes back to Powell [4] and the algorithmic details are
found in the reference. Besides of a few internal changes concerning numerical details, the
main extensions of QL compared to ZQPCVX are the separate handling of upper and lower
bounds and the optional provision of the Cholesky factor of C.

As part of the sequential quadratic programming code NLPQL for constrained nonlinear
programming, QL is frequently used in practice. Even many of the standard test problems
of the collections of Hock and Schittkowski [3] and Schittkowski [6] are badly scaled, ill-
conditioned, or even degenerate. The reliability of an SQP solver depends mainly on the
numerical efficiency and stability of the code solving the quadratic programming subproblem.
As verified by the comparative study of Schittkowski [10], NLPQL and QL successfully

2

solve all 306 test problems under consideration. In addition, all 1,000 test examples of
the interactive data fitting system EASY-FIT, see Schittkowski [9], are solved by the code
DFNLP. The subroutine is an extension of NLPQL and depends also on the stable solution
of quadratic programming subproblems, see Schittkowski [7].

2 Program Documentation

The Fortran subroutine QL reorganizes some data to solve the quadratic program (1) by
a modification of a code going back to Powell [4]. An extension is available for special
subproblems arising when solving nonlinear least squares problems, see Schittkowski [7].

Usage:

CALL QL(M, ME, MMAX, N, NMAX,
/ MNN, C, D, A, B,
/ XL, XU, X, U, EPS,
/ MODE, IOUT, IFAIL, IPRINT, WAR,
/ LWAR, IWAR, LIWAR)

Declaration of arguments:

M : Number of constraints.
ME : Number of equality constraints.

MMAX : Row dimension of array A containing linear constraints. MMAX
must be at least one and greater or equal to M.

N : Number of optimization variables.

NMAX : Row dimension of C. NMAX must be at least one and greater or
equal to N.

MNN : Must be equal to M+N+N when calling QL, dimension of U.

C(NMAX,N) : Objective function matrix which should be symmetric and positive
definite. If MODE=0, C is supposed to be the upper triangular
factor of a Cholesky decomposition of the objective function matrix.

3

D(N) : Contains the constant vector of the quadratic objective function.

A(MMAX,N) : Matrix of the linear constraints, first ME rows for equality, then
M-ME rows for inequality constraints.

B(M) : Constant values of linear constraints in the same order.
XL(N),XU(N) : On input, the one-dimensional arrays XL and XU must contain the

upper and lower bounds of the variables.

X(N) : On return, X contains the optimal solution.

U(MNN) : On return, U contains the multipliers subject to the linear con-
straints (first M locations) and bounds. At the optimal solution,
all multipliers of inequality constraints are nonnegative.

EPS : Final termination accuracy (e.g. 1.0D-12). The parameter value
should not be smaller than the underlying machine precision.

MODE :

MODE=0 - Initial Cholesky factorization of C provided by the
calling program, stored in the upper triangular
part of array C.

MODE=1 - Cholesky decomposition internally computed.

IOUT : Output unit number, i.e., all write-statements start with
’WRITE(IOUT,... ’.

IFAIL : Termination reason:
IFAIL=0 : Optimality conditions satisfied.

IFAIL=1 : Termination after too many iterations (40*(N+M)).

IFAIL=2 : Termination accuracy insufficient.

IFAIL=3 : Inconsistency, division by zero.

IFAIL=4 : Numerical instabilities.
IFAIL=5 : LWAR, LIWAR, MNN, or EPS incorrect.

IFAIL>100 : Inconsistent constraints and IFAIL=100+ICON,

where ICON denotes a constraint causing the conflict.

IPRINT : Specification of the desired output level:

4

IPRINT=0 : No output of the program.

IPRINT=1 : Only a final error message is given.

WAR(LWAR) : Real working array of length LWAR. If QL is terminated with
IFAIL=4, rounding errors prevent satisfaction of constraints and
QL can be restarted with EPS=WA(1).

LWAR : Length of WAR, must be at least 3*NMAX*NMAX/2 + 10*NMAX
+ 2*MMAX + 1.

IWAR(LIWAR) : Integer working array of length LIWAR.

LIWAR : Length of IWAR, should be at least N.

3 Example

To give an example how to organize the code, we consider a simple quadratic program,

x1, . . . x5 ∈ IR :

min 1
2

∑5
i=1 x2

i − 21.98x1 − 1.26x2 + 61.39x3 + 5.3x4 + 101.3x5

−7.56x1 + 0.5x5 + 39.1 ≥ 0 ,

−100 ≤ xi ≤ 100 , i = 1 . . . , 5

The corresponding Fortran source code is listed below.

IMPLICIT NONE
INTEGER NMAX, MMAX, NXMNN, LWAR, LIWAR
PARAMETER (NMAX = 5,
/ MMAX = 1,
/ NXMNN = MMAX + NMAX + NMAX,
/ LWAR = 3*NMAX*NMAX/2 + 10*NMAX + 2*MMAX + 1,
/ LIWAR = NMAX)
INTEGER N, M, ME, MODE, IOUT, IPRINT, IFAIL, MNN, I, J,
/ IWAR(LIWAR)
DOUBLE PRECISION X(NMAX), A(MMAX,NMAX), B(MMAX), U(NXMNN),
/ XL(NMAX), XU(NMAX), C(NMAX,NMAX), D(NMAX),
/ WAR(LWAR), EPS, F, T

C
C Set some constants
C

IOUT = 6
IPRINT = 1
EPS = 1.0D-12
N = 5
M = 1
ME = 0

5

MNN = M + N + N
C
C Set problem data
C

DO I=1,M
DO J=1,N

A(I,J) = 0.0D0
ENDDO
B(I) = 0.0D0

ENDDO
DO I=1,N

DO J=1,N
C(I,J) = 0.0D0

ENDDO
C(I,I) = 1.0D0
D(I) = 0.0D0
XL(I) = -100.0D0
XU(I) = 100.0D0

ENDDO
A(1,1) = -7.56D0
A(1,5) = 0.5D0
B(1) = 39.1D0
D(1) = -21.98D0
D(2) = -1.26D0
D(3) = 61.39D0
D(4) = 5.3D0
D(5) = 101.3D0

C
C Execute QL with predetermined Cholesky decomposition
C

MODE = 0
CALL QL (M, ME, MMAX, N, NMAX,
/ MNN, C, D, A, B,
/ XL, XU, X, U, EPS,
/ MODE, IOUT, IFAIL, IPRINT, WAR,
/ LWAR, IWAR, LIWAR)

C
C Final objective function value
C

F = 0.0D0
IF (IFAIL.EQ.0) THEN

DO I=1,N
T = 0.0D0
DO J=1,N

6

T = T + C(I,J)*X(J)
ENDDO
F = F + (0.5D0*T + D(I))*X(I)

ENDDO
ENDIF

C
C Output generation
C

WRITE(IOUT,*) ’Optimal solution values:’
WRITE(IOUT,*) (X(I),I=1,N)
WRITE(IOUT,*) ’Objective function value:’,F

C
C End of main program
C

STOP ’QL_DEMO’
END

The following output should appear on the screen:

Optimal solution values:
-1.42539840706855 1.26000000000000 -61.3900000000000
-5.30000000000000 -99.7520239148764
Objective function value: -6996.50559772314

Some further quadratic programs for testing a correct implementation are found in Hock
and Schittkowski [3].

References

[1] Boland N.L. (1997): A dual-active-set algorithm for positive semi-definite quadratic
programming, Mathematical Programming, Vol. 78, 1-27

[2] Goldfarb D., Idnani A. (1983): A numerically stable method for solving strictly convex
quadratic programs, Mathematical Programming, Vol. 27, 1-33

[3] Hock W., Schittkowski K. (1981): Test Examples for Nonlinear Programming Codes,
Lecture Notes in Economics and Mathematical Systems, Vol. 187, Springer

[4] Powell M.J.D. (1983): ZQPCVX, A FORTRAN subroutine for convex quadratic pro-
gramming, Report DAMTP/1983/NA17, University of Cambridge, England

[5] Schittkowski K. (1985/86): NLPQL: A Fortran subroutine solving constrained nonlin-
ear programming problems, Annals of Operations Research, Vol. 5, 485-500

7

[6] Schittkowski K. (1987a): More Test Examples for Nonlinear Programming, Lecture
Notes in Economics and Mathematical Systems, Vol. 182, Springer

[7] Schittkowski K. (1988): Solving nonlinear least squares problems by a general pur-
pose SQP-method, in: Trends in Mathematical Optimization, K.-H. Hoffmann, J.-B.
Hiriart-Urruty, C. Lemarechal, J. Zowe eds., International Series of Numerical Math-
ematics, Vol. 84, Birkhäuser, 295-309

[8] Schittkowski K. (1999): EASY-OPT: An interactive optimization system with auto-
matic differentiation - User’s guide, Report, Department of Mathematics, University
of Bayreuth, D-95440 Bayreuth

[9] Schittkowski K. (2002): Numerical Data Fitting in Dynamical Systems, Kluwer Aca-
demic Publishers, Dordrecht

[10] Schittkowski K. (2006): NLPQLP: A Fortran implementation of a sequential quadratic
programming algorithm with distributed and non-monotone line search - User’s guide,
version 2.2, Report, Department of Computer Science, University of Bayreuth, D-
95440 Bayreuth

8

	Introduction
	Program Documentation
	Example

