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Abstract
Numerical test results are presented for solving smooth nonlin-

ear programming problems with a large number of constraints, but a
moderate number of variables. The active set method proceeds from a
given bound for the maximum number of expected active constraints
at an optimal solution, which must be less than the total number of
constraints. A quadratic programming subproblem is generated with
a reduced number of linear constraints from the so-called working set,
which is internally changed from one iterate to the next. Only for ac-
tive constraints, i.e., a certain subset of the working set, new gradient
values must be computed. The line search is adapted to avoid too
many active constraints which do not fit into the working set. The
active set strategy is an extension of an algorithm described earlier
by the author together with a rigorous convergence proof. Numerical
results for some simple academic test problems show that nonlinear
programs with up to 200,000,000 nonlinear constraints are efficiently
solved on a standard PC.

Keywords: SQP; sequential quadratic programming; nonlinear program-
ming; many constraints; active set strategy

1 Introduction

We consider the general optimization problem to minimize an objective func-
tion under nonlinear equality and inequality constraints,

x ∈ IRn :

min f(x)

gj(x) = 0 , j = 1, . . . , me ,

gj(x) ≥ 0 , j = me + 1, . . . , m .

(1)
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To simplify the notation, upper and lower bounds of the variables are omitted.
It is assumed that the functions f(x) and gj(x), j = 1, . . ., m, are contin-

uously differentiable on IRn, and that the nonlinear programming problem
possesses a very large number of nonlinear inequality constraints on the one
hand, but a much lower number of variables. A typical situation is the dis-
cretization of an infinite number of constraints, as indicated by the first two
case studies.

1. Semi-infinite optimization: Constraints must be satisfied for all y ∈ Y ,
where y is an additional variable and Y ⊂ IRr,

x ∈ IRn :
min f(x)

g(x, y) ≥ 0 for all y ∈ Y .
(2)

Here we assume for simplicity that there is only one scalar restriction of
inequality type. If we discretize the set Y , we get a standard nonlinear
programming problem, but with a large number of constraints depending on
the desired accuracy.

2. Min-max optimization: We minimize the maximum of a function f de-
pending now on two variables x ∈ IRn and y ∈ IRr,

min
x∈X

max
y∈Y

f(x, y) (3)

with suitable subsets X ⊂ IRn and Y ⊂ IRr, respectively. (3) is easily
transformed into an equivalent semi-infinite nonlinear programming problem
with one additional variable.

3. L∞-Approximation: The situation is similar to min-max optimization,
but we want to minimize the maximum of absolute values of a given set of
functions,

min
x∈IRn

max
i=1,...,r

|fi(x)| . (4)

Typically, the problem describes the approximation of a nonlinear function
by a simpler one, i.e., fi(x) = f(ti) − p(ti, x). In this case, f(t) is a given
function depending on a variable t ∈ IR and p(t, x) a member of a class of
approximating functions, e.g., a polynomial in t with coefficients x ∈ IRn.
The problem is non-differentiable, but can be transformed into a smooth one
assuming that all functions fi(x) are smooth.
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In addition, also optimal control problems often possess a very large num-
ber of constraints, but a reasonably small number of variables. The total
number of constraints m can become so large that even the linearized con-
straints cannot be stored in memory.

Our main application we have in mind, is structural mechanical optimiza-
tion with a limited number of design variables, typically not depending on the
number of Finite Elements. On the other hand, constraints often depend on
the FE discretization, e.g., for bounding stresses and displacements at each
node or for taking a large number of load cases into account, where each
single one could double the number of constraints. The proposed active set
strategy has been used, for example, in an FE-based optimization system of
EADS called Lagrange for many years, see Kneppe, Kramer, and Winkler [2]
or Schittkowski, Zillober, and Zotemantel [7].

The basic idea is to proceed from a user-provided value mw with n ≤
mw ≤ m by which we estimate the maximum number of active constraints
expected at the optimal solution. Only quadratic programming subproblems
with mw linear constraints are created which require lower storage and allow
faster numerical solution. Thus, one has to develop a strategy to decide,
which constraint indices are added to a working set of size mw

W
.
= {j1, . . . , jmw} ⊂ {1, . . . , m}

and which ones have to leave the working set.
It is difficult to estimate a priori the size of the working set, i.e., mw,

without knowing anything about the internal structure of the mathematical
optimization problem. It is possible, that too many constraints are violated
at a starting point even if it is known that the optimal solution possesses
only very few active constraints. To avoid an unnecessary blow-up of the
working set, it would be possible to extend the given optimization problem
by an additional artificial variable xn+1, which, if chosen sufficiently large at
the start, decreases the number of active constraints. (1) is then replaced by

x ∈ IRn+1 :

min f(x) + ρxn+1

gj(x) = 0 , j = 1, . . . , me ,

gj(x) + xn+1 ≥ 0 , j = me + 1, . . . , m ,

xn+1 ≥ 0 .

(5)

The choice of the penalty parameter ρ and the starting value for xn+1

is crucial. A too rapid decrease of xn+1 to zero must be prevented to avoid
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too many active constraints, which is difficult to achieve in general. But if
adapted to a specific situation, the transformation works very well and can
become extremely helpful.

To further reduce the number of gradient evaluations, the active set strat-
egy is extended. Gradients are calculated at a new iterate only for a certain
subset of the estimated active constraints, i.e., for a subset of W . The un-
derlying SQP algorithm is described in Schittkowski [8], and the presented
active set approach in Schittkowski [10], which contains more details, a con-
vergence analysis, and a listing of the test problems used again in this paper.
The existing procedure is slightly extended based on numerical experiments
performed since then, especially to make the line search more efficient and
robust.

Active set strategies are widely discussed in the nonlinear programming
literature and have been implemented in most of the available codes. A
computational study for linear constraints was even conducted in the 70’s,
see Lenard [5], and Google finds about 100,000 hits for active set strategy

nonlinear programming. It is out of the scope of this paper to give a review.
Some of these strategies are quite complex and a typical example is the one
included in the KNITRO package for large scale optimization, see Byrd,
Gould, Nocedal, and Waltz [1], based on linear programming and equality
constrained subproblems, whereas Tits [14] published an active set strategy
for linear programming.

The modified SQP-algorithm is outlined in Section 2, and some numerical
test results based on a few academic examples are found in Section 3, where
the number of nonlinear constraints is very large, i.e., up to 200,000,000. The
amazing observation is that the large number of constraints is obtained by
discretization leading to nonlinear programs with a large number of nearly
dependent active constraints, which are nevertheless efficiently solved.

2 An Active-Set Sequential Quadratic Pro-

gramming Method

Sequential quadratic programming methods construct a sequence of quadratic
programming subproblems by approximating the Lagrangian function

L(x, u)
.
= f(x) −

m∑
j=1

ujgj(x) (6)
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quadratically and by linearizing the constraints. A typical dense SQP code
takes all constraints into account, and requires a double precision working
array of length O(n2 + n ·m). In particular, we need m · n double precision
real numbers to store the gradients of the constraint functions.

We assume now that n is of reasonable size, say below 100, but that m
is very large compared to n, say 1,000,000 or even more. Then either the
available memory is insufficient to store the total Jacobian matrix of size
n ·m, or the large set of linear constraints in the subproblem slows down the
quadratic programming solver because of internal IO loads of the runtime
system of the compiler. It is furthermore assumed that there are no sparsity
patterns in the Jacobian matrix of the constraints which could be exploited.

Our goal is to replace m by mw in the quadratic programming sub-
problem, where mw is a user-provided number depending on the available
memory and the expected number of active constraints, and which satisfies
n ≤ mw ≤ m. It is supposed that a double precision array of size n ·mw can
be allocated. Moreover, it has to be guaranteed that the active-set algorithm
is identical with a standard SQP method if m = mw.

Thus, we formulate a quadratic programming subproblem with mw linear
constraints. If xk denotes an iterate of the algorithm, vk the corresponding
multiplier estimate and Bk a positive definite estimate of the Hessian of the
Lagrangian function (6), we solve quadratic programs of the form

d ∈ IRn, δ ∈ IR :

min 1
2
dTBkd+ �f(xk)

Td + 1
2
σ2

kδ
2 ,

�gj(xk)
Td+ (1 − δ)gj(xk)

{
=
≥
}

0 , j ∈ J�
k ,

�gj(xj(k))
Td+ gj(xk) ≥ 0 , j ∈ K

�
k .

(7)

An additional variable δ is introduced to prevent infeasible linear constraints,
see Schittkowski [8] for details. The index set J�

k is called the set of active
constraints and is defined by

J�
k
.
= {1, . . . , me} ∪ {j : me < j ≤ m, gj(xk) < ε or v

(k)
j > 0} . (8)

It is assumed that |J�
k | ≤ mw, i.e., that all active constraints are part of the

working set
Wk

.
= J�

k ∪K�
k (9)

with mw elements. The working set contains the active constraints plus a
certain subset of the non-active ones, K

�
k ⊂ K�

k , defined by

K�
k := {1, . . . , m} \ J�

k . (10)
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vk = (v
(k)
1 , . . . , v(k)

m )T is the actual multiplier estimate and ε a user provided
error tolerance. The indices j(k) in (7) denote previously computed gradients
of constraints. The idea is to recalculate only gradients of active constraints
and to fill the remaining rows of the constraint matrix with previously com-
puted ones.

We have to assume that there are not more than mw active constraints in
each iteration step. In addition, we need some safeguards in the line search
algorithm to prevent this situation. We do not support the idea to include
some kind of automatized phase I procedure to project an iterate back to the
feasible region whenever this assumption is violated. If, for example at the
starting point, more than mw constraints are active, it is preferred to stop
the algorithm and to leave it to the user either to change the starting point
or to establish an outer constraint restoration procedure depending on the
problem structure.

After solving the quadratic programming subproblem (7) we get a search
direction dk and a corresponding multiplier vector uk. The new iterate is
obtained by

xk+1
.
= xk + αkdk , vk+1

.
= vk + αk(uk − vk) (11)

for approximating the optimal solution and the corresponding optimal mul-
tiplier vector. The steplength parameter αk is the result of an additional line
search sub-algorithm, by which we want to achieve a sufficient decrease of an
augmented Lagrangian merit function

ψr(x, v)
.
= f(x) − ∑

j∈J(x,v)

(vjgj(x) − 1

2
rjgj(x)

2) − 1

2

∑
j∈K(x,v)

v2
j /rj . (12)

The index sets J(x, v) and K(x, v) are defined by

J(x, v)
.
= {1, . . . , me} ∪ {j : me < j ≤ m, gj(x) ≤ vj/rj} ,

K(x, v)
.
= {1, . . . , m} \ J(x, v) .

(13)

The corresponding penalty parameters rk
.
= (rk

1 , . . . , r
k
m)T that control

the degree of constraint violation, must carefully be chosen to guarantee a
sufficient descent direction of a merit function

φrk
(αk) ≤ φrk

(0) + αkμφ
′
rk

(0) , (14)
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where

φrk
(α)

.
= ψrk

((
xk

vk

)
+ α

(
dk

uk − vk

))
. (15)

It is essential to understand that in contrast to most other SQP algorithms
which exist, we perform a simultaneous line search subject to the primal and
the dual variables. The advantage is that another separate update of the
multipliers is avoided.

An important requirement is that at each intermediate step of the line
search algorithm, at most mw constraints are active. If this condition is
violated, the steplength is further reduced until satisfying this condition.
From the definition of our index sets, we have

J�
k ⊃ J(xk, vk) . (16)

The starting point x0 is crucial from the viewpoint of numerical efficiency
and must be predetermined by the user. It has to satisfy the assumption that
not more than mw constraints are active, i.e., that J0 ⊂ W0. The remaining
indices of W0 are to be set in a suitable way and must not overlap with the
active ones. Also W0 must be provided by the user to have the possibility to
exploit pre-existing knowhow about the position of the optimal solution and
its active constraints.

The basic idea of the algorithm can be described in the following way:
We determine a working set Wk and perform one step of a standard SQP-
algorithm, NLPQLP [12] in our case, with mw nonlinear constraints. Then
the working set is updated and the whole procedure repeated.

One particular advantage is that the numerical convergence conditions
for the reduced problem are applicable for the original one as well, since all
constraints not in the working set Wk are inactive, i.e., satisfy gj(xk) > ε for
j ∈ {1, . . . , m} \Wk.

The line search procedure described in Schittkowski [8] can be used to
determine a steplength parameter αk. The algorithm is a combination of an
Armijo-type steplength reduction with a quadratic interpolation of φk(α).
The proposed approach guarantees theoretical convergence results, is very
easy to implement and works satisfactorily in practice. But in our case we
want to achieve the additional requirement that all intermediate iterates do
not possess more than mw violated constraints. By introducing an additional
loop reducing the steplength by a constant factor, it is always possible to
guarantee this condition. An artificial penalty term is added to the objective

7



function consisting of violated constraints. The modification of the line search
procedure prevents iterates of the modified SQP-method that violate too
many constraints.

Since a new restriction is included in the working set Wk+1 only if it
belongs to J�

k+1, we always get new and actual gradients for the quadratic
programming subproblem (7). But gradients can be reevaluated for any
larger set, e.g., for all indices of Wk+1. In this case, we can even expect a
better performance of the algorithm.

The proposed modification of the standard SQP-technique is straightfor-
ward and easy to implement, see Schittkowski [10] for details. However, we
want to stress that its practical performance depends mainly on the heuris-
tics used to determine the working set Wk. The first idea could be to take
out those constraints from the working set which have the largest function
values. But the numerical size of a constraint depends on its internal scaling.
In other words, we cannot conclude from a large restriction function value
that the constraint is probably inactive.

By the subsequent algorithm, we summarize in short the main steps of our
active set strategy. One important ingredient is an extended merit function
used only for an additional subiteration during the line search,

φrk
(α)

.
= φrk

(α) +
ν

2

m∑
j=me+1

g−j (xk)
2 , (17)

where ν > 0 is a penalty constant and g−j (xk)
.
= min{0, gj(xk)}, me < j ≤ m.

Algorithm 2.1 Active Set Strategy

Start: Choose mw with n ≤ mw ≤ m and x0 ∈ IRn with

|J�
0 | = me + |{j : me < j ≤ m, gj(x0) < ε}| ≤ mw .

Moreover, let W0
.
= J�

0 ∪K�
0 such that gj(x0) ≥ ε for all j ∈ K

�
0.

Main Loop: For k = 0, 1, . . . let xk ∈ IRn and vk ∈ IRm be given iterates and
Wk the corresponding working set with |Wk| ≤ mw. Compute new iterates
xk+1 ∈ IRn and vk+1 ∈ IRm and a new working set Wk+1 as follows:

1. Search Direction: Solve the quadratic program (7) with mw linear con-
straints to get a new search direction dk ∈ IRn for the primal and a new
guess uk ∈ IRm for the dual variable. Note that (7) contains only |J�

k |
newly computed constraint gradients �gj(xk), j ∈ J�

k .
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2. Line Search: Let α0
k
.
= 1. For i = 0, 1, . . . compute αi+1

k from αi
k as

follows:

(a) Compute all constraint values gj(xk + αi
kdk), j = 1, . . . , m. If too

many constraints are active, i.e., if |J�
k,i| > mw for

J�
k,i

.
= {1, . . . , me}∪{j : me < j ≤ m, gj(xk+α

i
kdk) < ε or v

(k)
j > 0},

replace αi
k by ταi

k, 0 < τ < 1. Repeat this loop until |J�
k,i| ≤ mw.

(b) Determine αi+1
k in the usual way by a combination of an Armijo-

type steplength reduction and a quadratic interpolation subject to
φrk

(0), φ
′
rk

(0), and φrk
(αi

k), see [8].

3. Working Set: Select a new working set Wk+1
.
= J�

k+1 ∪K�
k+1, where the

indices of K
�
k+1 are selected according to the following guidelines:

(a) Among the constraints feasible at xk and xk+1, keep those in the
working set that are violated during the line search. If there are
too many of them according to some given constant, select con-
straints for which

gj(xk+1) − ε

gj(xk+1) − gj(xk + αk,i−1dk)
(18)

is minimal, where αk,i−1 is an iterate of the line search procedure.
The decision whether a constraint is feasible or not, is performed
with respect to the given tolerance ε.

(b) In addition, keep the restriction in the working set for which gj(xk+
dk) is minimal.

(c) Take out those feasible constraints from the working set, which are
the oldest ones with respect to their successive number of iterations
in the working set.

Step 3 is chosen to get a decision on constraints in the working set Wk

that is independent from the scaling of the functions as much as possible.
Under the assumptions mentioned so far, it is shown in Schittkowski [10],

Section 3, that

φ′
rk

(0) = �ψrk
(xk, vk)

T

(
dk

uk − vk

)
< −1

4
γ‖dk‖2 (19)
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for all k and a positive constant γ, i.e., we get a sufficient decrease of a merit
function. If we assume, that the additional modification of the steplength is
avoided, e.g., by a sufficiently large mw, or is at least bounded away from
zero, convergence of the algorithm follows in the sense that a stationary point
is approximated, see Schittkowski [8].

It is possible that we get a descent direction of the merit function, but
that φ′

r(0) is extremely small. To avoid interruption of the whole iteration
process, the idea is to repeat the line search with another stopping criterion.
Instead of testing (19), we accept a stepsize αk as soon as the inequality

φrk
(αk) ≤ max

k−p(k)<=j<=k
φrj

(0) + αkμφ
′
rk

(0) (20)

is satisfied, where p(k) is a predetermined parameter with p(k) = min{k, p},
p a given tolerance. Thus, we allow an increase of the reference value φrk

(0)
in a certain error situation, i.e., an increase of the merit function value, see
Dai and Schittkowski [3] for details and a convergence proof.

3 Numerical Tests

The modified SQP-algorithm is implemented in the form of a Fortran sub-
routine with name NLPQLB, see Schittkowski [13]. As pointed out in the
previous section, an iteration consists of one step of a standard SQP-method,
in our case of the code NLPQLP [12], with exactly mw constraints. Basically,
only the definition of the working set and some rearrangements of index sets
must be performed. Then NLPQLP is called to perform only one iteration
proceeding from the iterates xk, vk, Bk, rk, and J�

k .
The algorithm requires an estimate of the maximum size of the work-

ing set, mw, a starting point x0 ∈ IRn, and an initial working set W0 with
J�

0 ⊂ W0, see (8) for a definition of the active set J�
k . A straightforward

idea is to sort the constraints according to their function values at x0, and to
take the first mw constraints in increasing order. However, one would have
to assume that all constraints are equally scaled, a reasonable assumption
in case of scalar semi-infinite problems of the form (2). Otherwise, an alter-
native proposal could be to include all constraints in the initial working set
for which gj(x) ≤ ε, and to fill the remaining position with indices for which
gj(x) > ε.

Some test problem parameters are summarized in Table 1, see also the
subsequent list of abbreviations. The examples are small academic test prob-
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lems taken from the literature, e.g., semi-infinite or min-max problems. They
have been used before to get the results published in Schittkowski [10], and
are now formulated with up to 200,000,000 constraints. P1F is identical to
P1, but formulated with soft constraints, see (5). Gradients are evaluated
analytically. More details are found in Schittkowski [10, 13], and the software
report [13] can be downloaded from http://www.klaus-schittkowski.de/.

The number of test cases is by far too small to draw general conclusions.
But we cannot find a large set of nonlinear programming test examples of the
type few variables and very many constraints, especially in the area structural
mechanical optimization, where we see an important domain of application.
Nevertheless, we believe that these examples illustrate at least typical be-
havior and also typical difficulties.

name n m mw f �

P1 3 60,000,000 30,000,000 5.33469
P1F 4 200,000,000 2,000 5.33469
P3 3 200,000,000 200,000 4.30118
P4 3 200,000,000 200 1.00000
TP332 2 200,000,000 100 398.587
TP374 10 200,000,000 50,000 0.2917
U3 6 200,000,000 200 0.00012399
L5 8 200,000,000 40,000 0.0952475
E5 5 200,000,000 50,000 125.619

Table 1: Test Examples

The Fortran codes are compiled by the Intel Visual Fortran Compiler, Ver-
sion 10.1, EM64T, under Windows Vista and Intel(R) Core(TM) Duo CPU
E8500, 3.16 GHz, and 8 GB RAM. The working arrays of the routine calling
NLPQLB are dynamically allocated. Quadratic programming subproblems
are solved by the primal-dual method of Goldfarb and Idnani [4] based on nu-
merically stable orthogonal decompositions, see Schittkowski [11]. NLPQLB
is executed with termination accuracy ε = 10−8. Numerical experiments are
reported in Table 2 and Table 3 where we use the following notation:
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name - identification of the test example
n - number of variables corresponding to formulation (1)
m - total number of constraints corresponding to formulation

(1)
mw - number of constraints in the working set
f � - final objective function value, i.e., f(xk) for the last com-

puted iterate xk

|Jmax| - maximum number of active constraints, i.e., the maximum
value |J�

k | taken over all k = 0, 1, . . .
nf - number of simultaneous function computations, i.e., of ob-

jective function and all constraints at a given iterate
ntot

g - total number of gradient computations, i.e., of all individ-
ual constraint gradient evaluations

nits - number of iterations or simultaneous gradient computa-
tions, i.e., of gradients of objective function and all con-
straints at a given iterate

ifail - termination reason, i.e.,
0 : successful return
1 : address space exceeded
2 : zero search direction
4 : error in line search
3 : too many active constraints

tcalc - calculation time in seconds

name |Jmax| nf ntot
g nits tcalc

P1 8,368,516 22 41,431,865 14 160
P1F 801 23 6,728 15 283
P3 50,002 10 550,023 8 64
P4 1 4 203 4 20
TP332 1 12 110 11 463
TP374 37,229 29 647,144 53 2,038
U3 285,901 129 2,376 44 57
L5 39,976 80 207,960 24 1,224
E5 41,674 30 212,245 21 388

Table 2: Numerical Results

It is obvious that the efficiency of an active set strategy strongly depends
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on how close the active set at the starting point to that of the optimal solution
is. If dramatic changes of active constraints are expected as in the case of
P1, i.e., if intermediate iterates with a large number of violated constraints
are generated, the success of the algorithm is marginal. On the other hand,
practical optimization problems often have special structures from where
good starting points can be predetermined. Examples P1F and especially
P4 and TP332 show a dramatic reduction of derivative calculations, which
is negligible compared to the number of function calls.

To show that the starting points are not chosen close to the optimal
solution, we display function values for E5. In this case, we minimize the
maximum of

f(x, t)
.
= (x1 + x2t− exp t)2 + (x3 + x4 sin t− cos t)2

over all t ∈ [0, 4]. After an equidistant discretization of this interval with
m break points and the introduction of an auxiliary variable, we obtain a
nonlinear programming problem in five variables andm constraints. Function
f(x, t) is plotted in Figure 1 for the starting point x = x0 and the computed
optimal solution x = x�. We observe a drastic change of the active set from
the initial guess to the final solution.

Since the constraints are nonlinear and non-convex, we have to compute
all m function values at each iteration to check feasibility and to predict the
new active set. The total number of individual constraint function evalua-
tions is therefore nf ·m.

Note that the code NLPQLB requires additional working space in the
order of 2m double precision real numbers plus mw · (n+ 1) double precision
numbers for the partial derivatives of constraints in the working set. Thus,
the total memory to run a test problem with m = 2 · 108 constraints requires
at least 6 ·108 double precision numbers and in addition at least 4 ·108 logical
values.

Although limited to a very small test set, the results show that the pro-
posed active set strategy might be helpful in situations, where the full Jaco-
bian matrix of a nonlinear programming problem cannot be kept in memory.
There remains the question whether it might be reasonable to benefit from an
active set information also in case of a somewhat lower number of constraints
without exceeding the available address space, or whether one should better
proceed from the full set of constraints.

Table 3 shows numerical results for m = 2 · 107, where mw is reduced
from mw = m down to mw = 20 successively. P1 and TP374 do not yield
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Figure 1: Function Plot for E5 at Start and Optimal Solution

interpretable results in this case because of too many intermediate active
constraints, and are therefore not taken into account.

The number of gradient evaluations decreases linearly with mw. In a few
situations, i.e., for P3 and L5, the number of iterations and the calculation
time increase the smaller mw becomes.

There are quite a few test runs, where the number of objective function
calls is significantly higher than the number of iterations. In these cases,
e.g., for U3, there are numerical instabilities in the search direction leading
to a large number of line search steps. Quite often, a line search needs to be
restarted to accept an uphill search direction.

In some situations, e.g., for E5, NLPQLB needs even more iterations
for m or m/10 constraints in the working set, where the active set is not
activated at all or where mw is too big to influence the solution process
significantly. There are two possible explanations. First, there might be
numerical instabilities when solving quadratic programs with a large number
of linear constraints. We apply a primal-dual method, where staring from a
solution of the unconstrained problem violated constraints are successively
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name mw ifail f� nf ntot
g nits tcalc

P1F 20,000,000 0 5.3347 44 20,051,088 27 179
2,000,000 0 5.3347 36 4,162,898 29 58

200,000 0 5.3347 48 1,038,331 28 60
20,000 0 5.3347 38 92,031 23 46
2,000 0 5.3347 35 8,836 22 42

200 0 5.3347 33 867 21 40
20 0 5.3347 33 138 21 40

P3 20,000,000 0 4.3012 4 20,016,153 4 27
2,000,000 0 4.3012 7 2,859,108 6 9

200,000 0 4.3012 9 487,562 8 6
20,000 0 4.3012 6 45,009 5 4
2,000 0 4.3012 10 6,024 8 6

200 0 4.3012 12 782 10 8
20 0 4.3012 17 148 13 10

P4 20,000,000 0 1.0000 4 19,998,787 4 15
2,000,000 0 1.0000 4 1,999,881 4 3

200,000 0 1.0000 4 199,990 4 2
20,000 0 1.0000 4 20,001 4 2
2,000 0 1.0000 4 2,002 4 2

200 0 1.0000 4 202 4 2
20 0 1.0000 4 22 4 2

TP332 20,000,000 0 279.64 12 20,000,010 11 83
2,000,000 0 279.64 12 2,000,010 11 47

200,000 0 279.64 12 200,010 11 43
20,000 0 279.64 12 20,010 11 43
2,000 0 279.64 12 2,010 11 43

200 0 279.64 12 210 11 37
20 0 279.64 10 29 10 37

U3 20,000,000 2 0.14338 156 93,395,906 90 738
2,000,000 2 0.38232 151 7,660,736 123 153

200,000 0 0.00012399 75 1,736,633 46 36
20,000 0 0.00012399 172 214,611 48 67
2,000 0 0.00012399 152 23,021 44 59

200 0 0.00012399 124 2,376 44 48
20 3 0.04083535 27 189 15 12

L5 20,000,000 1 - - - - -
2,000,000 0 0.95248 44 3,161,443 30 41

200,000 0 0.95248 49 613,887 33 11
20,000 0 0.95248 35 97,339 23 6
2,000 4 0.95248 94 4,195 10 14

200 0 0.95248 24 728 18 51
20 3 0.57489 3 23 2 1

E5 20,000,000 0 125.62 162 104,518,562 86 699
2,000,000 0 125.62 118 16,523,416 63 186

200,000 0 125.62 28 732,484 20 38
20,000 0 125.62 30 83,762 21 39
2,000 0 125.62 30 8,792 21 39

200 0 125.62 52 1,102 22 64
20 3 789.49 7 28 6 10

Table 3: Numerical Results for Varying mw
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added to an internal working set. It seems that in these cases, new constraints
might be too close to the active ones, such that a large number of exchanges
of working set entries are required, each requiring an update of the orthogonal
decomposition.

Another reason could be that we have an additional active set strategy
on a lower level by requesting the update of gradient information only for a
certain subset of Wk. For a large number of constraints with close function
and gradient values, this might result in a larger number of iterations because
a larger number of gradient exchanges, until the final active set is found.

4 Conclusions

We present some numerical results for an active set strategy for nonlinear
optimization problems with a relatively small number of variables, but a large
number of nonlinear constraints. Rigorous convergence results are available
and have been proved in a previous paper. Numerical results are presented
first for a situation where the full Jacobian of all constraints cannot be kept in
memory. The algorithm converges within an average of 22 iterations (Table 2)
and the superlinear convergence rate is not spoiled by the active set strategy.

From another set of test runs for a large number of constraints without
overflow of the address space, we conclude that it might be profitable to apply
the active set strategy as well. In particular, we observe a dramatic reduction
of the number of gradient evaluations, which is extremely important in case
of an expensive underlying simulation code. However, too small or too large
working sets can lead to instabilities during the line search. We conclude
that the proposed active set strategy even stabilizes an SQP algorithm in
case of very many constraints, if the working set is carefully chosen.

It is amazing that numerical instabilities due to degeneracy are prevented.
The huge number of constraints indicates that derivatives are extremely close
to each other, making the optimization problem unstable. Note that the
LICQ (linear independency constraint qualification) is more or less violated.
If we discretize the interval [0, 1] by 2 · 108 grid pints to get the same number
of constraints, see, e.g., problem P3, we can expect that the gradients of
neighbored active constraints coincide up to the first eight digits.

We benefit from the fact that derivatives are analytically given, and that
we apply an extremely stable primal-dual quadratic programming solver
based on orthogonal decompositions, see Schittkowski [11], Goldfarb and
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Idnani [4], and especially Powell [6].
We know that the number of test examples is too small to draw general

conclusions. But all observations indicate the advantages of an active set set
strategy, if carefully implemented.
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