
A Trust Region SQP Algorithm for Mixed-Integer Nonlinear

Programming 1

Oliver Exler, Klaus Schittkowski

Address: Oliver Exler
Process Engineering Group
IIM - CSIC
E - 36208 Vigo (Pontevedra)

E-mail: oexler@iim.csic.es

Address: Klaus Schittkowski
Department of Computer Science
University of Bayreuth
D - 95440 Bayreuth

E-mail: klaus.schittkowski@uni-bayreuth.de
Web: http://www.klaus-schittkowski.de

Date: July 7, 2006

Abstract

We propose a modified sequential quadratic programming (SQP) method for
solving mixed-integer nonlinear programming problems. Under the assumption that
integer variables have a smooth influence on the model functions, i.e., that function
values do not change drastically when in- or decrementing an integer value, succes-
sive quadratic approximations are applied. The algorithm is stabilized by a trust
region method with Yuan’s second order corrections. It is not assumed that the
mixed-integer program is relaxable or, in other words, function values are evaluated
only at integer points. The Hessian of the Lagrangian function is approximated
by a quasi-Newton update formula subject to the continuous and integer variables.
Numerical results are presented for a set of 80 mixed-integer test problems taken
from the literature. The surprising result is that the number of function evaluations,
the most important performance criterion in practice, is less than the number of
function calls needed for solving the corresponding relaxed problem without integer
variables.

Keywords: mixed-integer nonlinear programming, sequential quadratic programming,
SQP, trust region methods

1Sponsored by the EU Marie-Curie Training Network under project number MRTN-CT-2004-512233

1

1 Introduction

We consider the general optimization problem to minimize an objective function f under
nonlinear equality and inequality constraints,

x ∈ IRnc , y ∈ ZZni :

min f(x, y)

gj(x, y) = 0 , j = 1, . . . , me ,

gj(x, y) ≥ 0 , j = me + 1, . . . , m ,

xl ≤ x ≤ xu ,

yl ≤ y ≤ yu ,

(1)

where x and y denote the vectors of the continuous and integer variables, respectively. It
is assumed that the problem functions f(x, y) and gj(x, y), j = 1, . . ., m, are continuously
differentiable subject to all x ∈ IRnc .

Trust region methods have been invented many years ago first for unconstrained
optimization, especially for least squares optimization, see for example Powell [22], or
Moré [20]. Extensions were developed for non-smooth optimization, see Fletcher [11],
and for constrained optimization, see Celis [6], Powell and Yuan [23], Byrd et al. [5],
Toint [28] and many others. A comprehensive review on trust region methods is given by
Conn, Gould, and Toint [7].

On the other hand, sequential quadratic programming or SQP methods belong to the
most frequently used algorithms to solve practical optimization problems. The theoretical
background is described e.g. in Stoer [27], Fletcher [10], or Gill et al. [15].

However, the situation becomes much more complex if additional integer variables
must be taken into account. Numerous algorithms have been proposed in the past, see
for example Floudas [13] or Grossmann and Kravanja [16] for review papers. Typically,
these approaches require convex model functions and continuous relaxations of integer
variables. By a continuous relaxation, we understand that integer variables can be treated
as continuous variables, i.e., function values can also be computed between successive
integer points. There are branch-and-bound methods where a series of relaxed nonlinear
programs must be solved obtained by restricting the variable range of the relaxed integer
variables, see Gupta and Ravindran [17] or Borchers and Mitchell [2]. When applying
an SQP algorithm for solving a subproblem, it is possible to apply early branching, see
also Leyffer [18]. Pattern search algorithms are available to search the integer space, see
Audet and Dennis [1]. After replacing the integrality condition by continuous nonlinear
constraints, it is possible to solve the resulting highly nonconvex program by a global
optimization algorithm, see e.g. Li and Chou [19]. Outer approximation methods are
investigated by Duran and Grossmann [8] and Fletcher and Leyffer [12], where a sequence
of alternating mixed-integer linear and nonlinear programs must be solved. Alternatively,
it is also possible to apply cutting planes as in linear programming, see Westerlund and
Pörn [29].

But fundamental assumptions are often violated in practice. Many real-life mixed-
integer problems are not relaxable, and model functions are highly nonlinear and non-

2

convex. Moreover, some approaches require detection of infeasibility of nonlinear pro-
grams, a highly unattractive feature from the computational point of view. We assume
now that integer variables are not relaxable, that there are relatively large ranges for
integer values, and that the integer variables possess some kind of physical meaning, i.e.,
are smooth in a certain sense. It is supposed that a slight alteration of an integer value,
say by one, changes the model functions only slightly, at least much less than a more
drastic change. Typically, relaxable programs satisfy this requirement. In contrast to
them, there are categorical variables which are introduced to enumerate certain situations
and where any change leads to a completely different category and thus to a completely
different response.

A practical situation is considered by Bünner, Schittkowski, and van de Braak [3],
where typical integer variables are the number of fingers and the number of layers of an
electrical filter. By increasing or decreasing the number of fingers by one, we expect only
a small alteration in the total response, the transmission energy. The more drastically
the variation of the integer variable is, the more drastically model function values are
supposed to change.

Thus, we propose an alternative idea in Section 2 where we try to approximate the
Lagrangian subject to the continuous and integer variables by a quadratic function based
on a quasi-Newton update formula. Instead of a line search as is often applied in the con-
tinuous case, we use trust regions to stabilize the algorithm and to enforce convergence
following the continuous trust region method of Yuan [32] with second order corrections.
The specific form of the quadratic programming subproblem avoids difficulties with incon-
sistent linearized constraints and leads to a convex mixed-integer quadratic programming
problem, which can be solved by any available algorithm, for example, a branch-and-
bound method. Though we are unable to provide a convergence proof, our numerical
experiments reported in Section 3 demonstrate the performance of the algorithm. They
are based on a collection of 80 mixed-integer test problems, which have been widely used
in the past to develop and test mixed-integer programming algorithms.

2 The Mixed-Integer Trust Region SQP Method

Integer variables lead to extremely difficult optimization problems. Even if we assume that
the integer variables are relaxable and that the resulting continuous problem is strictly
convex, it is possible that the integer solution is not unique. There is no numerically ap-
plicable criterion to decide whether we are close to an optimal solution nor can we retrieve
any information about the position of the optimal integer solution from the continuous
solution of the corresponding relaxed problem.

To illustrate the basic algorithmic ideas, we proceed from the continuous case and
will subsequently introduce integer variables again. To facilitate the notation, we ne-
glect upper and lower bounds xu and xl, see (1), and we consider the somewhat simpler

3

formulation

x ∈ IRn :

min f(x)

gj(x) = 0 , j = 1, . . . , me ,

gj(x) ≥ 0 , j = me + 1, . . . , m .

(2)

It is assumed that all problem functions f(x) and gj(x), j = 1, . . ., m, are continuously
differentiable on IRn.

The basic procedure of a trust region method is to compute a new iterate xk+1 by a
second order model or a close approximation. The stepsize is restricted by a trust region
radius Δk, where k denotes the k-th iteration step. Subsequently, a ratio rk of the actual
and the predicted improvement subject to a certain merit function is computed. The
trust region radius is either enlarged or decreased depending on the deviation of rk from
the ideal value rk = 1. If sufficiently close to a solution, the artificial bound Δk should
not become active, so that the new trial proposed by the second order model can always
be accepted.

The Lagrangian function of (2) is

L(x, u) := f(x)−
m∑
j=1

ujgj(x) (3)

and the so-called exact penalty function is given by

Pσ(x) := f(x) + σ
∥∥∥g(x)−∥∥∥∞ . (4)

Here we combine all constraints in one vector, g(x) = (g1(x), . . . , gm(x))
T , and the minus-

sign defines the constraint violation

gj(x)
− :=

⎧⎨
⎩

gj(x) , if j ≤ me ,

min(0, gj(x)) , otherwise ,

j = 1, . . ., m. σ > 0 denotes the penalty parameter, which must be sufficiently large and
which is adapted by the algorithm. (4) is also called a merit function and is often applied
to enforce convergence, see for example Fletcher [11], Burke [4], or Yuan [32].

To obtain an SQP or sequential quadratic programming method, we compute a trial
step towards the next iterate by

d ∈ IRn :
min 1

2
dTBkd+∇f(xk)

Td+ σk

∥∥∥∥(∇gj(xk)
Td+ gj(xk)

)−∥∥∥∥∞
‖d‖∞ ≤ Δk .

(5)

The constraints are linearized and are treated as a penalty term subject to the maxi-
mum norm. A particular advantage is that we do not need further safeguards in case of

4

inconsistent linear systems. Note that (5) is equivalent to the quadratic program

d ∈ IRn, δ ∈ IR :

min 1
2
dTBkd+∇f(xk)

Td+ σkδ

−δ ≤ ∇gj(xk)
Td+ gj(xk) ≤ δ , j = 1, . . . , me ,

−δ ≤ ∇gj(xk)
Td+ gj(xk) , j = me + 1, . . . , m ,

‖d‖∞ ≤ Δk , 0 ≤ δ ,

(6)

which can be solved by any available black-box quadratic programming solver. The optimal
solution is denoted by dk and uk is the corresponding multiplier. σk and Δk are suitable
parameters which are iteratively adapted.

The second key ingredient of a trust region method is the prediction of a new radius
for the next iteration. The idea is to check the quotient of the actual and the predicted
improvements of the merit function by

rk :=
Pk(xk)− Pk(xk + dk)

φk(0)− φk(dk)
, (7)

where Pk(x) := Pσk
(x) denotes the penalty function (4) to measure the actual improve-

ment, and where

φk(d) := ∇f(xk)
Td+

1

2
dTBkd+ σk

∥∥∥∥(g(xk) +∇g(xk)
Td
)−∥∥∥∥∞ (8)

is used to estimate the linearly predicted improvement, i.e., the objective function of
subproblem (5). If rk is close to one or even greater than one, then Δk is enlarged and
if rk is very small, Δk is decreased. If rk remains in the intermediate range, Δk is not
changed at all. More formally, we use the same constants proposed by Yuan [32], and set

Δk+1 =

⎧⎪⎪⎨
⎪⎪⎩

max [2Δk, 4‖dk‖∞] , if rk > 0.9 ,

Δk , if 0.1 ≤ rk ≤ 0.9 ,

min[Δk/4, ‖dk‖∞/2] , if 0 < rk < 0.1 .

(9)

If, on the other hand, rk < 0, then Δk is decreased and we solve subproblem (5) again.
The penalty parameter σk is updated by testing

φk(dk) ≤ φk(0)− δkσk min
(
Δk, ‖g(xk)

−‖∞
)

. (10)

If this condition is not satisfied, the penalty parameter σk is increased and Δk is decreased.
Finally, one has to approximate the Hessian matrix of the Lagrangian function in a

suitable way by a matrix Bk. To avoid calculation of second derivatives and to obtain a
final superlinear convergence rate, the standard approach is to update Bk by the BFGS
quasi-Newton formula. The update formula is based on the Lagrangian function (3),
where the multiplier vector uk obtained from (6) is inserted.

Because of the non-differentiable merit function, however, superlinear convergence
cannot be guaranteed and it is even possible that the algorithm only converges linearly,

5

see Yuan [30]. To avoid this situation, Fletcher [11] introduced a second order correction,
for which superlinear convergence can be shown, see Yuan [31]. Thus, the classical trust
region method as outlined before is combined with an additional correction which can be
interpreted as a feasible direction step. We define a new approximation at xk + dk, if the
basis step obtained form solving (5) is not as good as expected,

φ̄k(d) :=
1

2
(d+ dk)

TBk(d+ dk) +∇f(xk)
T (d+ dk) + σk

∥∥∥∥(∇gj(xk)
Td+ gj(xk + dk)

)−∥∥∥∥∞
(11)

and get the modified subproblem

d ∈ IRn :
min φ̄k(d)

‖d+ dk‖∞ ≤ Δk .
(12)

Let the solution be d̂k. Since the subproblem possesses the same structure as (5), it is
easily transformed into an equivalent problem which can be solved by an available black
box quadratic programming solver, see (6). If the quadratic programming subproblems
are solved by a primal-dual method as in our case, an available Cholesky decomposition
of Bk can be passed from (5) to (12).

The quotient rk needed to adopt the trust region, is replaced by

r̂k :=
Pk(xk)− Pk(xk + dk + d̂k)

φk(0)− φk(dk)
. (13)

Moreover, we need

r̄k := rk +
φ̄k(0)− φ̄k(d̂k)

φk(0)− φk(dk)
, (14)

to predict the actual value of r̂k.
The resulting trust region SQP algorithm with second order correction of Yuan [32] is

somewhat more complex and consists of the following steps:

Algorithm 2.1 0: Let x0 ∈ IRn, Δ0 > 0, B0 ∈ IRn×n positive definite, δ0 > 0, σ0 > 0,
ε > 0, and let k := 1.

1: Solve subproblem (5) or (6), respectively, to get dk and the multiplier uk. If φk(0)−
φk(dk) < ε and g(xk)

− < ε, then stop. If ‖g(xk)
−‖∞ − ‖(g(xk)

− +∇g(xk)dk‖∞ < ε
and ‖(g(xk)

−+∇g(xk)dk‖∞ > ε, let σk := 11σk and δk := δk/11. If (10) is violated,
let σk+1 := 2σk and δk+1 := δk/4, else σk+1 := σk and δk+1 := δk.

2: Compute rk by (7). If rk > 0.75, goto Step 5. Solve subproblem (12) to get d̂k and
the corresponding multiplier ûk, and compute r̄k by (14). Let uk := ûk. If rk < 0.25,
goto Step 3. If 0.9 < r̄k < 1.1, let Δk+1 := 2Δk, else Δk+1 := Δk and goto Step 6.

3: If r̄k < 0.75, goto Step 4. Otherwise, compute f(xk+dk+ d̂k) and g(xk+dk+ d̂k). If
Pk(xk+dk+d̂k) ≥ Pk(xk+dk), goto Step 4. Calculate r̂k by (13) and let dk := dk+d̂k,
rk := r̂k. If rk ≥ 0.75, goto Step 5. If rk ≥ 0.25, goto Step 6.

6

4: Let Δk+1 := ‖dk‖∞/2 and goto Step 6.

5: If ‖dk‖∞ < Δk, then Δk+1 := Δk and goto Step 6. If rk > 0.9, then Δk+1 := 4Δk,
else Δk+1 := 2Δk.

6: If rk > 0, goto Step 7. Otherwise, let xk+1 := xk, Bk+1 := Bk, increment k, and
goto Step 1.

7: Define a new iterate xk+1 := xk + dk, compute f(xk+1) and g(xk+1), update Bk+1 by
the BFGS formula applied to dk and ∇L(xk+1, uk) −∇L(xk, uk). Increment k and
goto Step 1.

For Algorithm 2.1, the superlinear convergence rate can be proved, see Fletcher [11]
and Yuan [31]. The individual steps depend on a large number of constants, which are
carefully selected based on numerical experience.

Now we introduce the integer variables again and consider the mixed-integer nonlin-
ear program (1). The goal is to apply the trust region SQP algorithm Algorithm 2.1
outlined before and adapt it to the mixed-integer case with as few alterations as pos-
sible. Due to the integer variables, the quadratic programming subproblems that have
to be solved are mixed-integer quadratic programming problems and can be solved by
any available algorithm. Since the generated subproblems are always convex, we apply a
branch-and-bound algorithm, see Spickenreuther [26]. Thus, the mixed-integer quadratic
programming problems of Step 1 and Step 2 are of the form

d ∈ IRnc ,
e ∈ ZZni ,
δ ∈ IR

:

min 1
2

(
d
e

)T

Bk

(
d
e

)
+∇xf(xk, yk)

Td+ dyf(xk, yk)
T e + σkδ

−δ ≤ ∇xgj(xk, yk)
Td+ dygj(xk, yk)

T e+ gj(xk, yk) ≤ δ , j = 1, . . . , me ,

−δ ≤ ∇xgj(xk, yk)
Td+ dygj(xk, yk)

T e+ gj(xk, yk) , j = me + 1, . . . , m ,

max(xl,−Δc
k) ≤ d ≤ min(xu,Δ

c
k) ,

max(yl,−Δi
k) ≤ e ≤ min(yu,Δ

i
k) ,

0 ≤ δ .
(15)

The solution is denoted by dk and ek.
Since we do not assume that (1) is relaxable, i.e., that f and g1, . . ., gm can be evaluated

at any fractional parts of the integer variables, we approximate the first derivatives at
f(x, y) by the difference formula

dyf(x, y) =
1

2
(f(x, y1, . . . , yj + 1, . . . , yni

)− f(x, y1, . . . , yj − 1, . . . , yni
)) (16)

for j = 1, . . . , ni, at neighbored grid points. If either yj + 1 or yj − 1 violates a bound,
we apply a non-symmetric difference formula. Similarly, dygj(x, y) denote a difference
formula for first derivatives at gj(x, y) computed at neighbored grid points.

7

The adaption of the trust region radius must be modified, since a trust region radius
smaller than one does not allow any further change of integer variables. Therefore, two
different radii are defined, Δc

k for the continuous and Δi
k for the integer variables. We

prevent Δi
k from falling below one by Δi

k+1 := max(1, 2Δi
k) and Δi

k+1 := max(1, 4Δi
k) in

Step 2 and Step 5 of Algorithm 2.1, respectively. Note, however, that Step 4 allows a
decrease of Δi

k below one. In this situation, integer variables are fixed and a new step
is made only subject to the continuous variables. As soon as a new iterate is accepted,
we set Δi

k to one in order to be able to continue optimization over the whole range of
variables.

Furthermore, we use a non-monotone trust region adaption to reduce the probability
of Δi

k falling below one, see Toint [28] for a more sophisticated version. We allow an
increase of penalty function values to accept new iterates earlier and to reduce the number
of reductions of Δi

k. Thus, we replace formula (7) by

rk :=
Pk(xlk)− Pk(xk + dk)

φk(0)− φk(dk)
, (17)

where xlk is defined by
Pk(xlk) := max

0≤j≤mk

Pk(xk−j) (18)

with mk := min(k,M). M defines the number of successful iterations to be considered
for computing xlk . r̂k is then calculated by

r̂k :=
Pk(xlk)− Pk(xk + dk + d̂k)

φk(0)− φk(dk)
. (19)

The robustness of our algorithm is further improved by adding a new step to Algorithm
2.1 to handle functions with narrow curved valleys. In these cases, Δi

k is often lower than
one. Step 8 is executed whenever the stopping condition of Step 1 is fulfilled.

8: If no improvement since last execution of Step 8, then stop.
Else solve relaxed subproblem (5) and round integer variables. Define a new it-
erate (xk+1, yk+1) := (xk + dk, yk + ek), compute f(xk+1, yk+1) and g(xk+1, yk+1),
update Bk+1 by the BFGS formula applied to (dk, ek) and ∇L(xk+1, yk+1, uk) −
∇L(xk+1, yk+1, uk), increment k and goto Step 1.

By accepting iterates leading to an increase of the penalty function P , we hope to escape
from local minima.

We do not have a convergence proof for the proposed trust region method for solving
nonlinear mixed-integer programming problems, even not for the convex case. However,
the computational method is reliable and efficient as shown in the subsequent section.

8

3 Numerical Tests

We evaluate the performance of the trust region mixed-integer code called MISQP on a
set of 80 mixed-integer nonlinear test problems found in the literature. Some of them are
widely used to develop and test new algorithms, see for example Floudas et al. [14]. More
details about the test problems, individual numerical results, and also of comparative
results for continuous test problems are found in Exler and Schittkowski [9] together
with a documentation of the Fortran code MISQP. The number of continuous variables
is between 0 and 16, the number of integer variables between 1 and 48, the number of
equality constraints between 0 and 17, and the total number of constraints between 0 and
53.

Mixed-integer quadratic programming subproblems are solved by the branch-and-
bound code MIQLB4, see Spickenreuther [26], where the corresponding continuous pro-
grams are solved by the primal-dual code QL, see Schittkowski [25]. Derivatives subject
to continuous variables are approximated by forward differences. The test examples are
provided with exact solutions, either known from analytical solutions or from the best
numerical data known to our knowledge. The Fortran codes are compiled by the Intel
Visual Fortran Compiler, Version 9.1, under Windows XP64, and executed on a Dual
Core AMD Opteron processor 265 with 1.81 GHz and 4 GB of RAM.

First we need a criterion to decide whether the result of a test run is considered as
a successful return or not. Let εt > 0 be a tolerance for defining the relative accuracy,
xk the final iterate of a test run, and x� the supposed exact solution. Then we call the
output a successful return, if the relative error in the objective function is less than εt and
if the maximum constraint violation is less than ε2t , i.e., if

f(xk)− f(x�) < εt|f(x�)| (20)

and ‖g(xk)
−‖∞ < ε2t . We take into account that a code returns a solution with a better

function value than the exact one, subject to the error tolerance of the allowed constraint
violation. However, there is still the possibility that an algorithm terminates at a local
solution. Thus, we call the return of a test run a local one, if the internal termination
conditions are satisfied subject to a reasonably small tolerance ε = 10−8 and if instead of
(20)

f(xk)− f(x�) ≥ εt|f(x�)| (21)

holds. For our numerical tests, we use εt = 0.0001.
Numerical results are summarized in Table 1 where we use the following notation:

9

Table 1: Comparison of Mixed-Integer Version versus Continuous Relaxation

code psucc nbett nloc nerr ngrad nfunc time
MISQP 98 % 1 4 2 18 239 0.47
MISQP/RX 100 % 58 4 0 23 288 0.02

psucc - percentage of successful test runs (according to above definition)
nbett - number of better solutions, i.e., of feasible returns with function value

less than f(x�)− εt
nloc - number of local solutions obtained
nerr - number of test runs with error messages (IFAIL>0)
ngrad - average number of gradient evaluations subject to the continuous vari-

ables or iterations, respectively
nfunc - average number of equivalent function calls (including function calls used

for gradient approximations)
time - average execution time in seconds

In two cases, the solver for the mixed-integer quadratic program is unable to find a
feasible solution and an error message is generated. For four other test problems, the
algorithm is unable to improve an actual iterate and reports that a local solution is
obtained. However, it might be possible that the optimal solution found in the literature,
is inaccurate. It must be expected that the relaxed solution is better than the mixed-
integer solution. However, we observe that in about 27 % of all test runs the same
solution is approached. One reason is that bounds of the integer variables become active.
Surprisingly, the average number of iterations for mixed-integer solutions is less than the
number of iterations needed to solve its continuous relaxation.

Because of a large number of branch-and-bound steps, the calculation time for solving
mixed-integer quadratic programs is much higher than in case of relaxed problems. But
for practical applications with time consuming function calls we have in mind, these
additional efforts are tolerable and in many situations negligible compared to a large
amount of internal calculations of a complex simulation code. We observe that there are
only very few problems for which calculation times are excessively large dominating the
time evaluation, see Figure 1, where shown values are in seconds multiplied by 100. The
branch-and-bound solver for mixed-integer quadratic programs slows down in these cases
because of a relatively large number of integer variables.

4 Conclusions

We present a new trust region SQP method for nonlinear mixed-integer optimization,
where convexity and relaxation are not required. However, we assume that the model
functions are smooth in the sense that an increment of an integer variable by one leads

10

0

10

20

30

40

50

60

70

80

90

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

test problem

time

integer variables

Figure 1: Integer Variables and Calculation Times

to a small change of function values. The Hessian of the Lagrangian is approximated by
quasi-Newton updates for continuous and for integer variables.

Numerical tests for a set of 80 mixed-integer test problems show the efficiency of
the proposed algorithm. The average number of iterations and function evaluations,
respectively, is less than the corresponding figures obtained for relaxed problems starting
from the same point. Thus, the proposed algorithm is expected to be more efficient than
any other method which starts from a solution of the relaxed problem. Gradient values
must be provided by the calling program only subject to the continuous variables. Since
we assume that the problem is not relaxable, function values subject to integer variables
are evaluated only at grid points.

However, we do not have a convergence proof, even not for the convex case, and we
observe that the code might stop at an iterate from where a further local improvement
is not possible (local solution). More research is required to stabilize the implementation,
to analyze convergence, to understand the role of multipliers, and to improve stopping
criteria. Also there is a need to replace the presently used branch-and-bound algorithm
for solving mixed-integer quadratic programming problems by a more efficient method,
e.g., based on branch-and-cut.

References

[1] Audet C., Dennis J.E. (2001): Pattern search algorithm for mixed variable program-
ming, SIAM Journal on Optimization, Vol. 11, 573–594

11

[2] Borchers B., Mitchell J.E. (1994): An improved branch and bound algorithm for
mixed integer nonlnear programming, Computers and Operations Research, Vol.
21, No. 4, 359-367

[3] Bünner M.J., Schittkowski K., van de Braak G. (2004): Optimal design of electronic
components by mixed-integer nonlinear programming, Optimization and Engineer-
ing, Vol. 5, 271-294

[4] Burke J.V. (1992): A robust trust region method for constrained nonlinear program-
ming problems, SIAM Journal on Optimization, Vol. 2, 325–347

[5] Byrd R., Schnabel R.B., Schultz G.A. (1987): A trust region algorithm for non-
linearly constrained optimization, SIAM Journal of Numerical Analysis, Vol. 24,
1152–1170

[6] Celis M.R. (1983): A trust region strategy for nonlinear equality constrained opti-
mization, Ph.D. Thesis, Department of Mathematics, Rice University, USA

[7] Conn A.R., Gould I.M., Toint P.L. (2000): Trust-Region Methods, SIAM, Philadel-
phia

[8] Duran M., Grossmann I.E. (1986): An outer-approximation algorithm for a class of
mixed-integer nonlinear programs, Mathematical Programming, Vol. 36, 307–339

[9] Exler O., Schittkowksi K. (2006): MISQP: A Fortran implementation of a trust re-
gion SQP algorithm for mixed-integer nonlinear programming - user’s guide, version
2.1, Report, Department of Computer Science, University of Bayreuth

http://www.uni-bayreuth.de/departments/math/~kschittkowski/MISQP.pdf

[10] Fletcher R. (1981): Practical Methods of Optimization. Volume 2, Constrained Op-
timization, Wiley, Chichester

[11] Fletcher R. (1982): Second order correction for nondifferentiable optimization, in:
Watson G.A. (Hrsg.): Numerical analysis, Springer Verlag, Berlin, 85–114

[12] Fletcher R., Leyffer S. (1994): Solving mixed integer nonlinear programs by outer
approximation, Mathematical Programming, Vol. 66, 327–349

[13] Floudas C.A. (1995): Nonlinear and Mixed-Integer Optimization, Oxford University
Press, New York, Oxford

[14] Floudas C.A., Pardalos P.M., Adjiman C.S., Esposito W.R., Gumus Z.H., Harding
S.T., Klepeis J.L., Meyer C.A., Schweiger C.A. (1999): Handbook of Test Problems
in Local and Global Optimization, Kluwer Academic Publishers

[15] Gill P.E., Murray W., Wright M. (1981): Practical Optimization, Academic Press,
New York

12

[16] Grossmann I.E., Kravanja Z. (1997): Mixed-integer nonlinear programming: A sur-
vey of algorithms and applications, in: Conn A.R., Biegler L.T., Coleman T.F.,
Santosa F.N. (eds.): Large-Scale Optimization with Applications, Part II: Optimal
Design and Control, Springer, New York, Berlin

[17] Gupta O. K., Ravindran V. (1985): Branch and bound experiments in convex non-
linear integer programming, Management Science, Vol. 31, 1533–1546

[18] Leyffer S. (2001): Integrating SQP and branch-and-bound for mixed integer nonlin-
ear programming, Computational Optimization and Applications, Vol. 18, 295–309

[19] Li H.-L., Chou C.-T. (1994): A global approach for nonlinear mixed discrete pro-
gramming in design optimization, Engineering Optimization, Vol. 22, 109–122

[20] Moré J.J. (1983) Recent developments in algorithms and software for trust region
methods, in: Bachem A., Grötschel M., Korte B. (eds.): Mathematical Program-
ming: The State of the Art, Springer, Berlin, 258–287

[21] Powell M.J.D. (1978): The convergence of variable metric methods for nonlinearly
constrained optimization calculations, in: O.L. Mangasarian, R.R. Meyer, S.M.
Robinson (eds.): Nonlinear Programming 3, Academic Press

[22] Powell M.J.D. (1984): On the global convergence of trust region algorithms for
unconstrained minimization, Mathematical Programming, Vol. 29, 297–303

[23] Powell M.J.D., Yuan Y. (1991): A trust region algorithm for equality constrained
optimization, Mathematical Programming, Vol. 49, 189–211

[24] Schittkowski K. (1983): On the convergence of a sequential quadratic programming
method with an augmented Lagrangian search direction, Optimization, Vol. 14, 197-
216

[25] Schittkowski K. (2003): QL: A Fortran code for convex quadratic programming
- user’s guide, version 2.11, Report, Department of Mathematics, University of
Bayreuth

http://www.uni-bayreuth.de/departments/math/~kschittkowski/QL.pdf

[26] Spickenreuther T. (2005): Entwicklung eines allgemeinen Branch & Bound Ansatzes
zur gemischt-ganzzahligen Optimierung, Diploma Thesis, Department of Mathemat-
ics, University of Bayreuth

[27] Stoer J. (1985): Foundations of recursive quadratic programming methods for solv-
ing nonlinear programs, in: K. Schittkowski (ed.): Computational Mathematical
Programming, NATO ASI Series, Series F: Computer and Systems Sciences, Vol.
15, Springer

13

[28] Toint P.L. (1997): A nonmonotone trust-region algorithm for nonlinear optimization
subject to convex constraints, Mathematical Programming, Vol. 77, 69–94

[29] Westerlund, Pörn (2002): Solving pseudo-convex mixed integer optimization prob-
lems by cutting plane techniques, Optimization and Engineering, Vol. 3, 253-280

[30] Yuan Y.-X. (1984): An example of only linearly convergence of trust region algo-
rithms for nonsmooth optimization, IMA Journal on Numerical Analysis, Vol. 4,
327–335

[31] Yuan Y.-X. (1985): On the superlinear convergence of a trust region algorithm for
nonsmooth optimization, Mathematical Programming, Vol. 31, 269–285

[32] Yuan Y.-X. (1995): On the convergence of a new trust region algorithm, Numerische
Mathematik, Vol. 70, 515–539

14

	Introduction
	The Mixed-Integer Trust Region SQP Method
	Numerical Tests
	Conclusions

